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Abstract. The inverse semigroups are semigroups studied by many algebraists. In this paper we will 

formulate and prove some other propositions on these semigroups. So we will prove two propositions 

concerning the closure of a subsemigroup of a given inverse semigroup S, within the meaning 

introduced by Schein in 1962, two propositions on the group congruence on a normal subsemigroup of 

the inverse semigroup S, and a proposition about closed subsemigroup assertion of an inverse 

semigroup S. 
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Some definitons 

Definition 1. [1] A subsemigroup of the given semigroup  S  is called  full subsemigroup if 

it contains all the idempotents of this semigroup  S. 
In 1952, Vegner [5] introduced a natural partial order on an inverse semigroup S as follows: 

  ( ),  a b e E S a eb      

If H is an arbitrary subset of an inverse semigroup S, then, Schein in [3] and Clifford and Preston in 

[4], give this: 

Definition 2. The closure of  H  is the set H  defined as below: 

{ ,  }H x S h H h x       

From this definition we see, immediately, that if  H  and  K  are subsets of  S than: 

H H ;  H K H K      and  ( )H H    

Definition 3. [1], [2] The subset  H  of the inverse semigroup S is called closed if we have

H H   

Definition 4. [2] The subsemigroup N of the inverse semigroup S will be called normal  if 

it is full, closed and ,   '  x S x N x N     where  x’ is an inverse 

element of  x . 

Definition 5. [2], [6], [7], [8] A congruence  on an inverse semigroup S will be called a 

group congruence if the factor semigroup /S   is a group. 

Now, we must prove this propositions: 
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Proposition 1. If  S  is an inverse semigroup and  E  is the set of its idempotents then E  

is an normal  inverse subsemigroup of  S . 

Proof. First we see that: 

1 1 1

1 2

( ) ( , ) ( , ) ( ' ')

( ') ( ' ') ( ' ') ( ' )

x E e E e x e E e e x e xx ex

e e ex e ex e x x E





           

      
 

where  
1 2, , 'e e e E , 

2 1 2',  'e xx e e e   and  'x  is an inverse element of  x . So, we 

have shown that ( ) ( ' )x E x E    , i.e E  is inversive subsemigroup of  S.                                                                             

Second, E  is also full inverse subsemigroup of  S, because E E , that means E  

contains all idempotents of  S.                                                                                                                                                                                    

Third, E  is closed subsemigroup of  S, because ( )E E   .                                                                         

Finally, we must shown that  ,   '  x S x E x E    . Indeed we have: 

( '  ) ( ,  ' )y x E x z E y x zx            and 

( ) ( ,  ) ( ,  ) [( ') ( ')( )]

[( ') ( ') ] [( ') ( )( ' )] [( ') ( )( ' )]

[ ( ') ( ) ] [ ( ) ] [ ' ( ' ) ]    (1)

z E e E e z f E e fz xx e xx fz

xx e f xx z xx e fx x z xx ex fx x zx

e xx x fx y ex fx y x ex x fx y

          

     

     

 

moreover, the elements ' ' ,  ' 'x ex e x fx f   are idempotents                                                                                   

(Indeed:   2( ' ) ' 'x ex x exx ex   ' ' 'x xx eex x ex  )                                                                                                                                   

Now, from the last equlity (2) we have  ' 'e f y   and 

( ', ' ) ( ' ) ( )e f E e y y E     .                                     So, we have proved that 

E  is normal inversive subsemigroup of the semigroup  S.   

Proposition 2. If  N  is an inverse normal subsemigroup of the inverse semigroup of  S,  

then we have:    ,  ( ) ( )x S Nx xN      

Proof. Let be ( )y Nx   then we see that: 

[ ( ) ] ( ,  ) ( , ) ( ' ' )y Nx nx Nx nx y e E nx ey x nx x ey          

       (1)  

where 'x  is an inverse element of x . But  N  is normal, that means 'x Nx N , so 
1'x nx n  and  

1n N . From the last equality of  (1) we will have: 

1 1 1( ' ) ( ( ') ) ( ' )n x ey xn xx ey n e y      

where  ' ( ')e xx e E   as a product of two idempotents of  E. Now we can write: 

1 1( ' ) ( ) [ ( ) ]xn e y xn y y xN       

Finally, we have prove that ,  ( ) ( )x S Nx xN    . It’s the same to prove also  

,  ( ) ( )x S Nx xN    ,  so  ,  ( ) ( )x S Nx xN       
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Proposition 3. If N is an inverse normal subsemigroup of the inverse semigroup of  S,  

then 
2{( , )   ' }N x y S xy N      is a group congruence on S, and 

the 
N - class N  is the identity of the factor group / NS  . 

Proof. First, we must show that the relation 
N  is an equivalence relation on  S. 

a)  ,x S   'xx  is an idempotent, so 'xx E , where E  is the set of idempotents of  S. Since N  is 

normal, then it will be full. Thus E N  that means 'xx N  or we have 
Nx x . We  have 

shown that 
N  is reflective relation. 

b)  2( , ) ,x y S   we see: 

( ) ( ' ) [( ') ' ] ( ' ) ( )N Nx y xy N xy N yx N y x         

i.e.  
N  is symetric relation. 

c)  2( , ) ,x y S   we have also: 

( ) ( ' ' ) [( ')( ') ] [( ' ')( ') ]

[ ( ' )( ' ) ') ] [ ( ' )( ' ) ') ] [( ')( ')( ') ]

[( ')( ') '( ') ] [( ')( ') ]

N Nx y y z xy N yz N xy yz N xx xy yz N

x x x y y z N x y y x x z N xy yx xz N

xy xy xz N aa xz N

          

     

  

 

where  'a xy  and 'aa e  is an idempotent in  S, such that   ( ')e xz N . Now, if ( ')e xz n

,  than  'n xz  that means 'xz N  or ' Nxz N x z   or 
N  is a transitive relation,  (N  

is normal i.e. N  is closed, so N N  ). Thus we have prove that 
N  is an equivalence relation. 

Second, we must show that 
N  is a congruence. Let we have 

Nx y  and let show now that 

,  ( ) ( )Nc S xc yc    or   ( )( ) 'xc yc N . Indeed,  

( )( ) ' ( )( ' ') ( )( ' ') ( ' )( ') ' ( ' )( ') ' ( ')( ' ) '

( )( ' ')( ') ( )( ) '( ') ( ')( ') ( ')

xc yc xc c y xc c y xx x cc y x x x cc y x cc x x y

xc c x xy xc cx xy aa xy e xy

     

  
 

where  a xc ,  and  'e aa  is an idempotent of  S. It follows that e N , because  N  is full, 

that means E N . Now we can write: 

( ' ) [ ( ') ] [( )( ) ' ] ( ) ( )Ne N xy N e xy N xc yc N xc yc         

so  
N   is a right congruence. We can see also that 'Nx y xy N    and we will need to show

( ) ( )Ncx cy . Indeed,  

( )( ) ' ( )( ' ') ( ') ' ( ') '( ') ' '( ') 'cx cy cx y c c xy c c xy c a xy a a Na N       

because  N  is normal. Thus, ( )( ) 'cx cy N ,  that means  ( ) ( )Ncx cy  and so we conclude that 

N   is also left congruence, i.e. congruence on  S. 

Third, we must to show that  N  is a 
N - class: 
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a) 
2( , ) ,  ( ' ) (xy' N) Nx y N x N y N x y          so, all the 

elements of  N  belongs in the same 
N - class. 

b) ,  ,  'Nn N x S n x nx N      . If  
1'nx n  we have 

1 2 1( ') [ ' ( ' ) ' ]n nx n n n n n x ex    
  

where 

2 1'   and  'n n n N n n e E N     , so we will have:
 

2 2( ') ( ') ( ' ) ( ' ) ( )n ex n x x N x N x N         . Now, from 

a) and b), we can conclude that  N  is a 
N - class. 

Since  E N ,  i.e. all the idempotents belong in the same 
N - class, N,  it follows that 

N  is a 

group congruence and is clear that  N  is the unite element of the group / NS  . Indeed, fo any class 

/ Nx S   we have we have  xN x e xe x   
  

because we have  
Nxe x

 
 and  

'xex E . Indeed, 2( ') ( ' ) ' ( ' ) ' 'xex xe x x ex x x x eex xex   ,  so 'xex E N   that 

means 'Nxe x
 
or xe x . It is the same to show Nx x .   

 

Proposition 4.  If   is a group congruence on S, than exists an inverse normal 

subsemigroup N  of  S  such that 
N  . 

Proof. Since   is a group congruence on S, it follows that /S   is a group. Let be  N  the 

 - class that is the identity element of the group  /S  . Now we will prove that 
N  . 

First, N  is a subsemigroup of  S  because: 
2( ) ( ) ( ) ( ) ( )x N y N x N y N x y N N xy N xy N              

Second,  N  is the identity element of the group / NS   that means all the idempotents of  S  

belongs to N, i.e.  N  is full, so ,  'x N xx e E N     . On the other hand, we have:   

 ( ' ) ( ' ) ( ' ) ( ' ) ( ' ) ( ' )xx e N xx e N x x N N x N x N x N               

Where  x N ,  because x N . Thus N  is inversive subsemigroup of  S. 

Third,  N  is closed subsemigroup os  S. Indeed, 

( ) ( ,  ) ( ,  )

( )

x N n N n x e E N n ex

N n ex e x Nx x

         

      
 

So, x N  that means x N  and N N   (the other inclusion N N   is evident 

from the definition of closure of  N ), i.e. N  is closed. 

Fourth, we need to show that  ,  'x S x Nx N   . Indeed, 
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( ' ) ( ' ,  ) ( ' )

( ' ' ) ( ' ) ( ' )

y x Nx y x nx n N y x nx

y x n x x N x y x x y x x e N

      

            
 

So, y N  that means  y N , i.e.  N  is normal and identity element for both grupet 

/S   and / NS   

Fifth, it remains to be shown that  N  ,  where  
2{( , )   ' }N x y S xy N    ,  since 

  is congruence, we have: 

( ) [( ') ( ')] [( ') ] [( ') ] ( ' ) ( )Nx y xy yy xy e xy e N xy N x y
             

Thus, we have prove that  N     (2),  vice versa we have: 

1 1

( ) ( ' ) ( ' ) ( ' ' )

[( ' ) ( ' )] [( ') ( ')] [( ' ) ( ' )]

[( ) ] ( ) ( ) ( ) ( )

N N N
N

Nx y xy N xy N xy yy e N

xy N yy N xy yy xy y yy y

xe y xe y x N y x y x y

   

     



 

 

        

     

      

 

So, it follows that we have also  N     (3)                                                                                                         

Now, from (2) and (3) we can conclude that   N    

 

Proposition 5.  If U  is a closed inverse subsemigroup of  T  where T is a closed inverse 

subsemigroup of the semigroup  S, then U is a closed inverse 

subsemigroup of  S 

Proof.  Let be TU  the closure of  U  with respect to  T, SU  the closure of  U with 

respect to S  and ST  the closure of  T  with respect to S. So, we have:   TU U     and    

ST T                                                                              Now, we must show that  SU U                                                                                                                                          

First, we see that  T SU U  ,  because,  

( ) [ ,  ( ) ( )] [ ,  ( ) ( )] ( )T Sx U u U u x x T u U u x x S u U                 

Second, we see: ( ) ( )S Sx U x T     because: 

( ) ( ),   . .  S SU T U T T i e x T     
 
further  S SU T  ,  and now we can 

write 
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( ) ( ) [ ,  ( ) ( )] ( ) ( )S S Tx U x T u U u x x T x U U x U                 

Finally, we have proved that  SU U  ,  so, U  is a closed inverse subsemigroup of S.   
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