
International Journal of Business and Technology International Journal of Business and Technology

Volume 3
Issue 2 Spring 2015 Article 2

May 2015

Efficient Algorithm for solving 3SUM problem Efficient Algorithm for solving 3SUM problem

Muhamed Retkoceri
University for Business and Technology, muhamed.retkoceri@gmail.com

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/ijbte

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Retkoceri, Muhamed (2015) "Efficient Algorithm for solving 3SUM problem," International Journal of
Business and Technology: Vol. 3 : Iss. 2 , Article 2.
DOI: 10.33107/ijbte.2015.3.2.02
Available at: https://knowledgecenter.ubt-uni.net/ijbte/vol3/iss2/2

This Article is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It
has been accepted for inclusion in International Journal of Business and Technology by an authorized editor of UBT
Knowledge Center. For more information, please contact knowledge.center@ubt-uni.net.

https://knowledgecenter.ubt-uni.net/ijbte
https://knowledgecenter.ubt-uni.net/ijbte/vol3
https://knowledgecenter.ubt-uni.net/ijbte/vol3/iss2
https://knowledgecenter.ubt-uni.net/ijbte/vol3/iss2/2
https://knowledgecenter.ubt-uni.net/ijbte?utm_source=knowledgecenter.ubt-uni.net%2Fijbte%2Fvol3%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=knowledgecenter.ubt-uni.net%2Fijbte%2Fvol3%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/ijbte/vol3/iss2/2?utm_source=knowledgecenter.ubt-uni.net%2Fijbte%2Fvol3%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:knowledge.center@ubt-uni.net

International Journal of Business & Technology

Efficient Algorithm for solving 3SUM problem

Muhamed Retkoceri

Faculty of Computer Science and Engineering
University for Business and Technology

muhamed.retkoceri@gmail.com

Abstract. In this paper is presented an algorithm for solving 3SUM problem efficiently in general
computation model. The algorithm is based on sorting and splits the task into sub-tasks where this
approach enables the algorithm to run concurrently at the high-level of computing. The algorithm is O(n2)
and running sequentially achieves at least ~1/5 n2 number of basic necessary accesses of data structures.
In this paper is also presented a comparison of running performances in practice between the new
algorithm and the current most famous algorithm for 3SUM which is in-place and also based on sorting.

Keywords: 3SUM, Concurrent 3SUM, Algorithm, Concurrent Approach

Introduction

In computational complexity theory, the 3SUM problem asks if a given set of n integers, each with
absolute value bounded by some polynomial in n, contains three elements that sum to zero. [1,2,3].
The generalized version, rSUM, asks the same question of r elements. [1,2,3]. A naive solution would be
to search for all triples with three indexes where time complexity would be O(n3). Better algorithm should
achieve it in O(n2).There is a sub-quadratic algorithm for special models of computation. [5].
“There are a algorithms based on sorting with partial information”. [1]An algorithm for solving 3SUM is
presented based on the Fast Fourier Transformation taking into assumption that absolute values of n
numbers are smaller than n2/log n. [1,6].Solutions for general version of the problem are found in [1][2].
“The 3SUM problem was initially set in [2]. Gajentaan and Overmars collecteda large list of geometric
problems, which may be solved in an order of quadraticcomplexity, and nobody knows, how to do it faster
[2].”[1].3SUM is an important problem as it still remains to be an open problem in theoretical computer
science. 3SUM is found all over computational geometry.[2].The algorithm presented on this paper is still
quadratic but it is at least three times faster than the best known quadratic algorithm which is presented in
[7]. Running concurrently the algorithm would be additionally three to four times faster. In terms of
memory complexity the algorithm is O(n). It consumes additional linear memory but improves running
performance by a factor.

2 The algorithm

Suppose the input array is S[0 … n-1] of size n. First S is sorted and then is separated into arrays of
negatives and positives.
Let p be the number of positives and the array of negatives N[0 … n-p] in descending order and also the
array of positives P[0 … p] in ascending order.
Additionally let HTP(k,v) be the HashTable of Positives and HTN(k,v) the HashTable of Negatives, where
k is the key and v is the value.
All elements of P are put as keys in HTP in ascending order and it’s indexes as values, also all elements
of N are put as keys in HTN in descending order and it’s indexes as values in ascending order, so i =
HTN.get(N[i]) .

1

Retkoceri: Efficient Algorithm for solving 3SUM problem

Published by UBT Knowledge Center, 2015

International Journal of Business & Technology

The algorithm first checks for each negative number to every positive if there exists the third positive
number to sum up to zero and vice versa.

for i:=0 to n-p {
 a := N[i]
 for j:=0 to p {
 b:= P[j]
 c:= -(a+b)
 if c<b then break inner loop
 if HTP contains key(c) {
 if b=c and j = HTP.get(c) then break inner loop
 else save triple a,b,c
 }
 }
}
for i:0 to p {
 a := P[i]
 for j:=0 to n-p {
 b := N[j]
 c := -(a+b)
 if c>b then break inner loop
 if HTN contains key(c) {
 if b=c and j = HTN.get(c) then break inner loop
 else save triple a,b,c
 }
 }
}
The statement if b=c and j = HTP.get(c) enables the algorithm to distinguish duplicate elements so all
elements are considered as unique.
If the input is distinct simply that if statement can be removed and inside the nested loop the pruning if
statements must be modified to if c<=b and if c<=b.

2.1 Concurrent approach

The concurrent approach to solve the task requires separation of the input into odd and even numbers
besides into negatives and positives.
Suppose indexes 1,2,3,4 represent simultaneous processes, so the algorithm would be:
Assume the input is the set S and a, b, c, d S where a {2n < 0 : n },
b {2n+1 < 0 : n }, c {2p ≥ 0 : p } and d {2p+1 ≥ 0 : p }.
1. (b,d) check if -(b+d) and (b,c) check if -(b+c)
2. (a,c) check if -(a+c) and (a,d) check if -(a+d)
3. (d,a) check if -(d+a) and (d,b) check if -(d+b)
4. (c,b) check if -(c+b) and (c,a) check if -(c+a)

The above algorithm contains eight loops which four of them would run at the same time. The first loop:

(b,d) check if -(b+d), checks for every odd negative to every odd positive if there exists an even positive
third pair to sum up to zero. The algorithm is searching on different groups of elements at the same time
possibly speeding the algorithm up to 400%.

2

International Journal of Business and Technology, Vol. 3, Iss. 2 [2015], Art. 2

https://knowledgecenter.ubt-uni.net/ijbte/vol3/iss2/2
DOI: 10.33107/ijbte.2015.3.2.02

International Journal of Business & Technology

3 The comparison

The famous algorithm is as follows: [7]. Let’s assume input array is S[0 … n-1].
Sort(S)
for i:=0 to n-3 {
 a := S[i]
 k := i+1
 l := l-1
 while(k<l) {
 b := S[k]
 c := S[l]
 if a+b+c = 0 {
 save triple a,b,c
 k := k+1
 l := l-1
 }
 else if a+b+c > 0 then l := l-1
 else k := k+1
 }
}

Fig. 3. In this picture is compared the execution time in general computers with different random input for
both algorithms. Algo_1 is the presented algorithm and clearly beats the in-place algorithm. The average
running time is taken from different machines and the graph represents the size of input n in proportion to
CPU time in nanoseconds.

Conclusions

Using distinct input and HashSet lookups the algorithm is supposed to run even faster.
Further improvements can be done if somehow is possible to know if in small ranges between b and c
there is no other pair to sum up to 3 so those indexes could be easily skipped. When c is found on HashMap,
the associated value which is index can be checked if between b and c is only one element where it can be
safely skipped. Using nested HashMaps and Trees maybe it might be possible to skip few more indexes.

References

1.� Valerii Sopin, “A new algorithm for solving the rSUM problem”, arXiv:1407.4640v4.
2.� Gajentaan and M. Overmars, “On a class of O(n2) problems in computational geometry”,

Computational Geometry: Theory and Applications, 1995, № 5, 165–185.
3.� Erickson, Jeff, “Lower bounds for linear satisfiability problems”, Chicago Journal of Theoretical

Computer Science, 8, 1999.
4.� King, James, “A Survey of 3sum-Hard Problems”, www.cs.mcgill.ca, king@cs.ubc.ca, 2004.
5.� Baran, E. Demaine and M. Patrascu, “Subquadratic algorithms for 3SUM”, Lecture Notes in

Computer Science, 2005, № 3608, 409—421.
6.� T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, MIT Press and

McGraw-Hill, 2001.
7.� Michael Hoffmann “12. Visibility Graphs and 3-Sum”, Lecture on Monday 9th November,

Hoffmann@inf.ethz.ch, 2009.

3

Retkoceri: Efficient Algorithm for solving 3SUM problem

Published by UBT Knowledge Center, 2015

	Efficient Algorithm for solving 3SUM problem
	Recommended Citation

	spring2015.pdf

