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Abstract. The aim of this paper is to give the generalization condition of T-Ciric quasi contractive 

mapping. Also to study the generalization of strong convergence theorem of modified S-iteration 

process for Ciric quasi contractive operator in the framework of CAT(0) spaces based on new 

generalized condition for T-Ciric quasi contractive mapping. Our results extend and generalize many 

known results from the previous work given in the existing literature (see [1,6]). 

 

 

1.  Introduction and Preliminaries 

 

CAT(0)space. A metric space X is a CAT(0) space if it is geodesically connected and if every 

geodesic triangle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane. 

It is well known that any complete, simply connected Riemannian manifold having non-

positive sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces 

(see [3]), R-trees (see [11]), Euclidean buildings (see [12]), the complex Hilbert ball with a 

hyperbolic metric (see [13]), and many others. For a thorough discussion of these spaces and 

of the fundamental role they play in geometry, we refer the reader to Bridson and Haefliger 

[3]. Fixed point theory in CAT(0) spaces was first studied by Kirk (see [1,2]). He showed 

that every nonexpansive (single-valued) mapping defined on a bounded closed convex subset 

of a complete CAT(0) space always has a fixed point. Since then, the fixed point theory for 

single-valued and multi-valued mappings in CAT(0) spaces has been rapidly developed, and 

many papers have appeared. 

Let (𝑋, 𝑑) be a metric space. A geodesic path joining 𝑥, 𝑦 ∈ 𝑋  x ∈ X  is a map  𝑐 : [0, 𝑑(𝑥, 𝑦)] 

→ 𝑋   such that:  

• 𝑐(0) = 𝑥 

• 𝑐(𝑑(𝑥, 𝑦)) = 𝑦 

• d (c (𝑡1), 𝑐 (𝑡2)) = |𝑡1 − 𝑡2|     ,∀ 𝑡1, 𝑡2  ∈[0, 𝑑(𝑥, 𝑦)]. 

 The image α of c is called a geodesic (or metric) segment joining x and y. We say X is (i) a 

geodesic space if any two points of X are joined by a geodesic and (ii) uniquely geodesic if 

there is exactly one geodesic joining x and y for each x, y ∈ X, which we will denote by [x, 

y], called the segment joining x to y.  
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Comparision triangle 

A geodesic triangle ∆(𝑝, 𝑞, 𝑟). in a geodesic metric space (X, d) consists of three points in 

𝑝, 𝑞, 𝑟 ∈ 𝑋 and a geodesic segment between each pair of vertices [𝑝, 𝑞], [𝑞, 𝑟], [𝑟, 𝑝] . 
A comparison triangle for the geodesic triangle  ∆(𝑝, 𝑞, 𝑟)  in (X, d) is a triangle ∆̅ (�̅�, �̅�, �̅�) ⊂ 

ℝ2 such that: 

• 𝑑(𝑝, 𝑞) = 𝑑 (�̅�, �̅�) 

• 𝑑(𝑞, 𝑟) = 𝑑 (�̅�, �̅�) 

• 𝑑(𝑟, 𝑝) = 𝑑 (�̅�, �̅�)  

Definition of CAT(0) space  

Let (𝑋, 𝑑) be a geodesic metric space. It is called CAT(0) space  if for any geodesic triangle 

∆ ∈ 𝑋 and 𝑥, 𝑦 ∈ ∆ : 

       𝑑(𝑥, 𝑦) ≤ d (�̅�, �̅�)      ku  �̅�, �̅�  ∈ ∆̅ 
 

 

2. Main Result 

 

 Generalization of T-Ciric Quasi Contraction Mapping 

 

Let X be a CAT(0) space and , :S T X X  be two mappings. Then S  is called T-Ciric quasi 

contraction mapping if it satisfies the following condition: 

(1.1) 

( , ) ( , ) ( , ) ( , )
( , ) max ( , ), ,

2 2

d Tx TSx d Ty TSy d Tx TSy d Ty TSx
d TSx TSy h d Tx Ty

  
  

 
( )TCQC   

for all ,x y X  and 0 1.h    

Then the condition (TCQC) can be generalized as follows: 

(4.18)

( , ) ( , ) ( , ) ( , )
( , ) max ( , ), ,

d Tx TSx d Ty TSy d Tx TSy d Ty TSx
d TSx TSy h d Tx Ty

m m

  
  

 
*( )TCQC   

for all ,x y X  and 0 .
2

m
h   
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 Proof 

 

Each of the conditions 1 3( ) ( )TZ TZ  implies 
*( )TCQC   

1( )TZ   ( , ) ( , ) ( , ),
2

m
d TSx TSy ad Tx Ty a d Tx Ty     0 1a  ,  2.m    
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3. Generalization of strong convergence theorems in CAT(0) spaces 

 

 Theorem  

 

Let C be a nonempty closed convex subset of a complete CAT(0) space. Let , :S T C C  

be two commuting mappings such that T is continuous, one-to-one, sub-sequentially  

convergent and :S C C  is a T-Ciric quasi-contractive operator satisfying (TCQC)* 
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with 0 , 2.
2

m
h m     Let  nx  be defined by the iteration scheme (1.8) [1] . If  

1
,nn





   

1
,n nn

 



   

1
,n n nn

  



   then  nTx  converges strongly 

to Tu, where u is the fixed point of the operator S in C. 

 

 Proof 

 

From Theorem 1.1 [1], we get that S has a unique fixed point in C, say u. Consider ,x y C

. Since S  in a T-Ciric quasi-contractive operator satisfying (TCQC)*, then if 

     ( , ) ( , ) ( , )
h

d TSx TSy d Tx TSx d Ty TSy
m

    

                         ( , ) ( , ) ( , ) ( , ) ,
h

d Tx TSx d Ty Tx d Tx TSx d TSx TSy
m
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Which yields (using the fact that 0 , 2)
2
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1 1
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Which also yields (using the fact that 0 , 2)
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 (4.9)       
2

( , ) ( , ) ( , ).
1 1

h m h m
d TSx TSy d Tx Ty d Tx TSx

h m h m

   
    

    
  

Denote  

                        

max , ,
1

2
.

1

h m
h h

h m

h m
L

h m


 

  
 




  

Thus,in all cases, 

                   ( , ) ( , ) ( , )d TSx TSy d Tx Ty Ld Tx TSx    

(4.20)                              
2

( , ) ( , ).
1

h m
hd Tx Ty d Tx TSx

h m

 
   

 
  

holds for all , .x y C   

   Also from (TCQC)* with ,y u Su   we have 

             

( , ) ( , ) ( , )
( , ) max ( , ), ,

d Tx TSx d Tx TSu d Tu TSx
d TSx TSu h d Tx Tu

m m

 
  

 
    

                                

( , ) ( , ) ( , ) ( , )
max ( , ), ,

d Tx Tu d Tu TSx d Tx TSu d Tu TSx
h d Tx Tu

m m

  
  

 
  

                              
( , ) ( , )

max ( , ),
d Tx Tu d Tu TSx

h d Tx Tu
m

 
  

 
 

(4.21)                    ( , ).hd Tx Tu   

Now (4.21) gives 

(4.22)                      ( , ) ( , ).n nd TSx Tu hd Tx Tu   

(4.23)                      ( , ) ( , ).n nd TSy Tu hd Ty Tu  

(4.24)                      ( , ) ( , ).n nd TSz Tu hd Tz Tu  

Using (1.8),(2.6) and Lemma 1.1(ii) [1], we have 

                      ( , ) ( (1 ) , )n n n n nd Tz Tu d TSx Tx Tu      
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(4.25)                              

( , ) (1 ) ( , )

( ) (1 ) ( , )

[1 (1 ) ] ( , ).
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n n n n
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Again using (1.8),(2.5),(2.7) and Lemma 1.1(ii) [1], we have 

                       ( , ) ( (1 ) , )n n n n nd Ty Tu d TSz Tx Tu      
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Now using (1.8),(2.4),(2.8), TS ST  (by assumption of the theorem) and Lemma 1.7(ii) 

[1], we have  

                      1( , ) ( (1 ) , )n n n n nd Tx Tu d STy Tx Tu       

                                          

2
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( , ) (1 ) ( , )
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2{(1 ) (1 ) (1 ) },n n n n n n nh h h h h             since 

0 , 2,
2

m
h m    and by assumption of the theorem 
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  it follows that 

1
,nn





  therefore by 

Lemma 1.8 [1], we get that lim
𝑛→∞

 ( , ) 0.nd Tx Tu   Therefore { }nTx  converges strongly to 

,Tu  where u is the fixed point of the operator S in C. This completes the proof. 
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 Corollary 1 

 

Let C be a nonempty closed convex subset of a complete CAT(0) space. Let , :S T C C  

be two commuting mappings such that T is continuous, one-to-one, subsequentially 

convergent and :S C C  is T-Kannan contractive operator satisfying the condition 

                     
( , ) ( , )

( , ) ,
d Tx TSx d Ty TSy

d TSx TSy b
m

 
  

 
 

1
, ; 0, , 2.x y X b m

m

 
     

 
  

Let { }nTx  be defined by the iteration scheme (1.8) [1]. If 
1

,nn





 

1
,n nn

 



  and 

1
,n n nn

  



  then { }nTx converges strongly to Tu, where u 

is the fixed point of the operator S in C. 

 

 Corollary 2 

 

Let C be a nonempty closed convex subset of a complete CAT(0) space. Let , :S T C C  

be two commuting mappings such that T is continuous, one-to-one, subsequentially 

convergent and :S C C  is T-Chatterjea contractive operator satisfying the condition 

                     
( , ) ( , )

( , ) ,
d Tx TSx d Ty TSy

d TSx TSy c
m

 
  

 
 

1
, ; 0, , 2.x y X c m

m

 
     

 
  

Let { }nTx  be defined by the iteration scheme (1.8) [1]. If 
1

,nn





 

1
,n nn

 



  and 

1
,n n nn

  



  then { }nTx converges strongly to Tu, where u 

is the fixed point of the operator S in C. 
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