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AN OVERVIEW FOR CHAOS FRACTALS AND 

APPLICATIONS 
 

 

 

Adem Meta 
 

Cuyahoga Community College, Cleveland, Ohio 
 

 

Abstract. The goal of this paper is to present, a summary of concepts from the Chaos and Fractals 

theory and some basic theory to understand how the Chaos and Fractal theory fundamentals work, 

for more to explain how is related the chaos theory with mathematics application. This paper will 

provide examples of how this new approach could be applied and how is chaos related to the 

Statistics. In this paper, I am going to introduce the concept of “fractal” dimension and some 

examples to calculate the dimensions. At the center of fractals is Mandelbrot set, otherwise is 

called the hard of the fractals, on this paper I am going to give a short description for that. 

 

Keywords: Chaos, Fractals, Dimensions, Nonlinear, Dynamic, Logistic, Complex, etc. 

 

 

1. The Chaos theory 

 
The chaos theory is for some concepts that they offer an alternative that describes and 

explanations how is the behavior of some nonlinear systems (which are basically almost all 

naturally occurring physical, chemical, biological or social structures or systems). The name 

“Chaos” comes from the fact that nonlinear systems seem to behave chaotically or randomly from 

a traditional linear point of view. There are many natural systems whose behavior that can’t be 

described and explained by simply dividing the whole into its parts and study them separately 

from the rest of the system. For example, studying the behavior of an individual bee may not 

provide any insight into a beehive as a system because the bees colony’s behavior is driven by 

the cooperation and pheromone interaction between flowers. In a different example, of course 

the movement of water molecules in process of boiling the water might seem chaotic and random, 

but there are patterns of movements that change over time and tend to form similar structure. 

Most natural systems change over time and this change does not happen in proportional and 

regular manner. A concept of proportional change is an idealization because real life phenomena 

change differently sometimes smoothly, sometimes not smoothly. The Chaos theory provides a 

theoretical framework and a set of tools for conceptualizing change and the changing system may 

have appeared to be chaotic from traditional (linear) perspective while it exhibits coherence, 

structure and patterns of motion from the global and nonlinear perspective. 

Chaos is a fundamental property that possesses nonlinearity and it is very sensitive on initial 

conditions. Because of the nonlinearity in a chaotic system it becomes very difficult to make an 

exact or accurate predictions about the system over a given time interval. Weather forecasting is 

an example of how chaos theory effects the accuracy of predictions over a given time interval, 

but using the similar structured a meteorologist can predict how is going to move a hurricane. 

Through analyzing a weather pattern over time and different structures, meteorologists have been 

able to make better predictions of future weather based on this theory. 

The dictionary definition of chaos is turmoil, unpredicted, turbulence, primordial abyss, and 

undesired randomness, but scientists will tell you that chaos is something extremely sensitive to 
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initial conditions. Chaos also refers to the question of whether or not it is possible to make good 

long-term predictions about how a system will act. A chaotic system can actually develop in a 

way that appears very smooth and ordered. Determinism is the belief that every action is the 

result of preceding actions. It began as a philosophical belief in Ancient Greece thousands of 

years ago and was introduced into science around 1500 A.D. with the idea that cause and effect 

rules. Newton was closely associated with the establishment of determinism in modern science. 

His laws were able to predict systems very accurately. They were deterministic at their core 

because they implied that everything that would occur would be based entirely on what happened 

right before. Henry Adams has described like this "Chaos often breeds life, when order breeds 

habit". Henri Poincaré was really the "Father of Chaos [Theory],". Chaos theory describes 

complex motion and the dynamics of sensitive systems. Chaotic systems are mathematically 

deterministic but is hard or impossible to predict. Chaos is more evident in long-term systems 

than in short-term systems. Behavior in chaotic systems is not periodic, meaning that no variable 

describing the state of the system undergoes a regular repetition of values. A chaotic system can 

actually develop gradually in a way that appears to be smooth and ordered, however. Chaos refers 

to the issue of whether or not it is possible to make accurate long-term predictions of any system 

if the initial conditions are known to an accurate degree. Chaos occurs when a system is very 

sensitive to initial conditions. Initial conditions are the values of measurements at a given starting 

time. The phenomenon of chaotic motion was considered a mathematical oddity at the time of its 

discovery, but now physicists know that it is very widespread and may even be the norm in the 

universe. The weather is an example of a chaotic system. In order to make long-term weather 

forecasts it would be necessary to take an infinite number of measurements, which would be 

impossible to do. Also, because the atmosphere is chaotic, tiny uncertainties would eventually 

overwhelm any calculations and defeat the accuracy of the forecast. The presence of chaotic 

systems in nature seems to place a limit on our ability to apply deterministic physical laws to 

predict motions with any degree of certainty. 

One of the most interesting issues in the study of chaotic systems is whether or not the presence 

of chaos may actually produce ordered structures and patterns on a larger scale. It has been found 

that the presence of chaos may actually be necessary for larger scale physical patterns, such as 

mountains and galaxies, to arise. For centuries mathematicians and physicists have overlooked 

dynamical systems as being random and unpredictable. The only systems that could be 

understood in the past were those that were believed to be linear, but in actuality, we do not live 

in a linear world at all. In this world linearity is incredibly scarce. The reason physicists didn't 

know about and study chaos earlier is because the computer is our "telescope" when studying 

chaos, and they didn't have computers or anything that could carry out extremely complex 

calculations in minimal time.  Below we can see that how are beavering the logistical functions 

f(x)=kx(1-x), depending in values of k= 1.5, 2.6 and 3.3 and for certain value of initial points. 

 

 

Figure 1 

1.1. Chaos in the Real World 



Book of Proceedings 

International Conference on Computer Science and Communication Engineering 

 

57 

 

In the real world, there are three very good examples of unstable like the disease, political unrest, 

and family and community dysfunction. Disease is unstable because at any moment there could 

be an outbreak of illness in your body of some deadly disease for which there is no cure. This 

would cause some terror and chaos in your life. Political unrest is very unstable because people 

can revolt, throw over the government and create a wide war in different parts of the world. A 

war is another type of a chaotic system. A typical example of that is, the war in Middle East, 

which is hard to predict, how is going to be the future.  Family and community dysfunction is 

also unstable because if you have a very tiny problem with a few people or a huge problem with 

many people, the outcome will be huge with many people involved and many people's lives with 

physical, economical and moral problems. Chaos is also found in systems as complex as electric 

circuits, measles outbreaks, lasers, clashing gears, heart rhythms, electrical brain activity, 

circadian rhythms, fluids, animal populations, and chemical reactions, and in systems as simple 

as the pendulum. It also has been all time present in stock market and sometimes it is possibly to 

occur a turmoil in the stock market. 

 

 

2. Fractals 

 

A fractal is a geometric shape that has symmetry of scale and self-similarity. This means that it 

is a shape that you could zoom in on a part of it an infinite number of times and it would still look 

the same. This is also called self-similarity. Computer-generated fractals are produced 

mathematically, and these can create detailed pictures of mountains, plants, waves, coastlines, 

and planets. Some mathematicians, such as Benoit Mandelbrot, study nature first, looking for 

fractal behavior. 

Mathematics, Physics. a geometrical or physical structure having an irregular or fragmented 

shape at all scales of measurement between a greatest and smallest scale such that certain 

mathematical or physical properties of the structure, as the perimeter of a curve or the flow rate 

in a porous medium, behave as if the dimensions of the structure (fractal dimensions), are not 

only whole numbers (one, two or three) are greater than the spatial dimensions 

Fractals are geometric shapes that are very complex and infinitely detailed. They are giving a 

procedure describing how to construct and defined a small section, where the small sections of 

them are similar to large ones. One way to think of fractals for a function f(x) is to consider x, 

g(x), g(g(x)), g(g(g(x))), g(g(g(g(x)))), g(g(g(g(g(x))))), etc. Fractals are related to chaos because 

they are both complex systems that have similar properties. 

 

 

3. Fractals and Benoit Mandelbrot set 

 Another technique to study the chaos is through the study of fractals. Fractals are sets that 

display, self-similarity at all levels of magnification, and they may have non-whole number 

dimension that is typical of chaotic attractors. Roughly speaking, self-similarity means that a set 

remains qualitatively similar in its spatial characteristics under contraction or magnification 

Benoit Mandelbrot was a Poland-born French mathematician who greatly advanced fractals. 

When he was young, his father showed him the Julia set of fractals; he was not greatly interested 

in fractals at the time but in the 1970's, he became interested again and he greatly improved upon 

them, laying out the foundation for fractal geometry. He also advanced fractals by showing that 

fractals cannot be treated as whole-number dimensions; they must instead have fractional 

dimensions. Benoit Mandelbrot believed that fractals were found nearly everywhere in nature, at 

places such as coastlines, mountains, clouds, aggregates, and galaxy clusters.  
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Mandelbrot (1967, 1977, 1982) first introduced and then popularized the notion of fractals 

through his beautiful pictures of the Mandelbrot set (Figure 3), which is the iterative map of 

CZZn 

2

1  in the complex plane, where C = a + ib is a complex number and 00 Z .  

The Mandelbrot set is obtained for points that do not go to infinity (in the extended complex 

plane) for n . These points form the large cardioid in Figure 3 and many smaller cardioids, 

such as the one on the right and others that are even smaller, all of which are connected with thin 

lines. The boundary, which is also known as a Julia set, displays extremely complicated shapes 

that look similar at all levels of magnification. 

 The Mandelbrot set is associated with the entire family of iterative maps, resulting from fixing 

00 Z  and varying C, whereas a Julia set is obtained from a single iterative map with fixed C, 

and an initial point near 0. If the mapping is exponential given by )exp(1 nn ZZ  , where 

  is complex, the resulting Julia set is not the boundary of a cardioid but a beautiful sea-horse 

shape. 

 

Figure 2, Julia set 

 Gaston Julia and Pierre Fatou, sometimes called the fathers of complex analysis, were the first 

to study these phenomena, and the iteration of complex exponentials has led to a new field of 

complex (in the sense of complex numbers) dynamics. In the domain of real numbers, perhaps 

the best-known fractal is the Cantor set that is obtained by removing the middle third of the real 

interval [O, 1], then removing the middle thirds of the remaining intervals and so on. The 

relationship between fractals (Mandelbrot set, Julia set, Cantor set, etc.) and dynamical systems 

is not well having been in existence for a long time and therefore recognized and generally 

accepted, but a fractal is often obtained as the asymptotic remnant, or the attractor, of a chaotic 

dynamical system. The fractals appear in two distinct ways: a descriptive tool for studying 

irregular sets and forms, or a mathematical deduction, resulting from an underlying chaotic 

dynamic system.  
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Figure 3, Mandelbrot Set 

 

 

4. Fractal Dimension 

 

To explain the concept of fractal dimension, it is necessary to understand what we mean by 

dimension in the first place. Obviously, a line has dimension 1, a plane dimension 2, and a cube 

dimension 3. But why is this? It is interesting to see students struggle to enunciate why these facts 

are true. One of the most known fractal is Sierpinski triangle. Let find the dimension of the 

Sierpinski triangle? 

 

Fig 4 Sierpinski Triangle 

They often say that a line has dimension 1 because there is only 1 way to move on a line. 

Similarly, the plane has dimension 2 because there are 2 directions in which to move. Of course, 

there really are 2 directions in a line -- backward and forward -- and infinitely many in the plane. 

What the students really are trying to say is there are 2 linearly independent directions in the 

plane. Of course, they are right. But the notion of linear independence is quite sophisticated and 

difficult to articulate. Students often say that the plane is two-dimensional because it has ``two 

dimensions,'' meaning length and width. Similarly, a cube is three-dimensional because it has 

``three dimensions,'' length, width, and height. Again, this is a valid notion, though not expressed 

in particularly rigorous mathematical language. 

So why is a line one-dimensional and the plane two-dimensional? Of course that both of these 

objects are self-similar. We may break a line segment into 6 self-similar intervals, each with the 

same length, and each of which can be magnified by a factor of 6 to yield the original segment. 

We can also break a line segment into 9 self-similar pieces, each with magnification factor 9, or 

10 self-similar pieces with magnification factor 10. In general, we can break a line segment 

into n self-similar pieces, each with magnification factor n. 
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A square is different. We can decompose a square into 4 self-similar sub-squares, and the 

magnification factor here is 2. Alternatively, we can break the square into 9 self-similar pieces 

with magnification factor 3, or 16 self-similar pieces with magnification factor 4, or 25 self-

similar with magnification factor 25. Clearly, the square may be broken into 
2n  self-similar 

copies of itself, each of which must be magnified by a factor of n to yield the original figure.  

Finally, we can decompose a cube into n^3 self-similar pieces, each of which has magnification 

factor n. 

 
Figure 5: A square may be broken into n^2 self-similar pieces, each with magnification factor n 

Now we see an alternative way to specify the dimension of a self-similar object: The dimension 

is simply the exponent of the number of self-similar pieces with magnification factor N into 

which the figure may be broken. 

So what is the dimension of the Sierpinski triangle? How do we find the exponent in this case? 

For this, we need logarithms. Note that, for the square, we have n^2 self-similar pieces, each 

with magnification factor n. So we can write 

2
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Similarly, the dimension of a cube is 
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Thus, we take as the definition of the fractal dimension of a self-similar object 
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Now we can compute the dimension of S. For the Sierpinski triangle consists of 3 self-similar 

pieces, each with magnification factor 2. So the fractal dimension is 

58,1
2ln

3ln

)ln(
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so the dimension of S is somewhere between 1 and 2. 

But S also consists of 9 self-similar pieces with magnification factor 4. We have 

58.1
2ln

3ln

2ln2

3ln2

2ln

3ln

4ln

9ln
2

2

 DimentionFractal  

as before. Similarly, S breaks into 3^N self-similar pieces with magnification factors 2^N, so we 

again have 

58.1
2ln

3ln

2ln

3ln

2ln

3ln


N
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DimentionFractal

N

N

 

Fractal dimension is a measure of how "complicated" a self-similar figure is. In a rough sense, it 

measures "how many points" lie in a given set. A plane is "larger" than a line, while S sits 

somewhere in between these two sets. 

On the other hand, all three of these sets have the same number of points in the sense that each 

set is uncountable. Somehow, though, fractal dimension captures the notion of "how large a set 

is" quite nicely, as we will see below. 

 

 

5. APPLICATIONS 

 

We discuss various applications of chaos, fractals and related ideas in different disciplines that 

have been reported in the literature. My paper is going to give a short description on applications 

in the field of Mathematics, and Statistics.  

 

5.1. Chaos and Fractals in Mathematics  

 

The idea of defining an outer measure to extend the notion of length of an interval is of relatively 

recent origin in mathematics. Measures of sizes of sets originated with Bore1 (1895) and 

continued by Lebesgue (1904) as an underlying concept in the construction of an integral. 
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Carathhodory (1914) introduced the more general concept of outer measures that is the notion of 

linear measure in n-dimensional Euclidean space. Hausdorff (1919) extended Carath Bodory's 

measure to non-integral dimensions. This was shown by illustrating the Hausdorff dimension of 

the Cantor set to be ln 2/ln 3 = 0.6309. Sets of fractional dimension also occur in diverse branches 

of pure mathematics, such as the theory of numbers and nonlinear differential equations. 

Motivated by the theory of Brownian motion, measures of sets of curves were developed by 

Weiner in the 1920s that found widespread application in the theory of control and 

communication. An up-to-date geometric theory of sets with fractional dimension is given in 

Falconer (1985, 1990). Good (1941) gives an early example of an application in number theory. 

Investigations into asymptotic periodic behavior, transition to chaos and other dynamical 

consequences for ordinary differential equations are reported by different. Use of functional 

iterates in the theory of branching processes goes back at least to the work of Hawkins and Ulam 

(1944) and Good (1965). Thus, let g(x) is the Laplace generating function of a sequence of 

probabilities ,....},,{ 210 ppp , and then the probability that an individual has k male descendants 

in the nth generation is given by the coefficient of 
kx  in )(xg n

 where ))(()( 1 xggxg nn  . 

Neutron multiplication in fission and fusion devices are other practical applications of functional 

iterations. A related area of great interest is the theory of cellular automata in which a discrete 

dynamical system evolves in a space of uniform grid of cells. In contrast to continuous dynamical 

systems modeled via differential equations or iterates of maps, theory of cellular automata 

specifies the system's behavior in terms of a set of local values that apply to all cells at each 

discrete increments of time. Study of cellular automata is a separate area in itself, with many 

application areas such as parallel computing, image processing and pattern recognition. Toffoli 

and Margolus (1987) and Preston and Duff (1984) are good introductions to this area. From the 

viewpoint of our discussion, theory of cellular automata is relevant for at least two reasons: first, 

it provides a methodology for approximating continuous systems and, second, it affords an 

alternative model for complex system behavior in terms of known initial conditions and simple 

rules of evolution. Thus, cellular automata are capable of arbitrarily complex behavior with 

special properties of self-replication, efficient energy transduction and so on (Wolfram, 1984, 

1986; Nicolis and Prigogine, 1989). Such systems are examples of self-organization phenomena, 

and the field of synergetic~ is an outgrowth of study of such systems (Haken 1978). For other 

applications of cellular automata and a good account of the theory of functional iterations and 

nonlinear deterministic models, see Stein (1989). Cellular automaton models involve a great 

many variables, one for each cell, as opposed to models with differential equations or iterations 

of maps that require very few variables. On the other hand, many of the ideas and methods 

associated with fractals and dynamical systems, such as concepts of dimension and entropy, are 

applicable in the context of cellular automata. Another notion that is especially important in the 

latter context is algorithmic complexity. Use of notions of algorithmic complexity and their 

measures were first proposed by Kolmogorov (1965, 1983) and later developed by Chaitin 

(1987). Algorithmic complexity of a string of zeroes and ones is given by the number of bits of 

the shortest computer program that can generate this string. Such measures of complexity are 

useful for describing cellular automata and pattern formation. Rissanen (1986) has used this idea 

of algorithmic complexity for order determination in statistical models. The notion of complexity 

in a more general context was discussed in several papers by Good and summarized in Good 

(1977). Descriptions and characterization of complexity in spatiotemporal patterns for high-

dimensional nonlinear systems is discussed by Kasper and Schuster (1987). 

 

6. Chaos and Fractals in Statistics 
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It is known that deterministic model has been used for several decades for generating pseudo 

random numbers in stimulation experiments, the renewed interest in them is due to their possible 

use in modeling actual real-world process that have traditionally been studied through stochastic. 

There are not known methods for “fitting” a deterministic model to an actual process. A 

potentially important new tool resulting from the theory of chaos is the method of time –delay 

reconstruction of attractors from time series data. This method can give an idea about the 

minimum dimension of the underlying process, as   well as its long term behavior.  On the other 

hand, the reconstruction typically requires very long series, and it is sensitive to noise in the data.  

Noise reduction procedures specifically designed for reconstruction such as the method of 

Kostelich and Yorke (1987) are of great interest in this regard. These methods can complement 

traditional tools, such as factor and discriminate analysis, nonparametric smoothing methods and 

projection pursuit.  

A difference route to model identification was recently suggested by Chattereje and Yilmaz 

(1992). This method does not involve reconstruction, and it does not seek a deterministic model 

that generates an observed time series. Instead, it focuses on residuals resulting from any given 

stochastic time series model under consideration, such as ARIMA(p,q), and tries to  determine if 

the residuals appear to fit a white noise process. For the letter task, the estimated fractal dimension 

of the residuals is compared with the fractal dimension of the white noise process. 

Another potentially useful tool for the statisticians is the idea of fractal interpolation (Baransley, 

1998). Given a finite number of observations, this method generates a complete path interpolating 

the observations and in manner consistent with self-similarity. 

This idea can be useful in handling missing value in the data, and it is illustrated by Chattereje 

and Yilmaz (1992). It is usefulness for prediction purpose remains to be investigated. Another 

recent modeling tool that seems to have been motivated by fractals and fractals dimension is the 

notation of fractional differencing in the ARIMA(p,d,q) models,  where d is non integer. This 

idea can be used to model persistence (long memory) and anti-persistence (short memory) 

behavior. The process (0,d,0), -1/2<d<1/2 has been used by Mandelbrot and Van Ness(1968) for 

stimulating hydrologic data that show long-term memory. 
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