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On Form and Logic of Structures 

Feti Selmani 

PAN Engineering, Structurosys, Prishtinë, Kosovo 

panengineering@gmail.com 

Abstract. In Civil Engineering, every structure harbours some degree of logic within it. Sometimes, it 

is easy to see it, while sometimes it lies somehow hidden and only a well informed eye can take hold 

of it. The Natural phenomena are dual in their manifestation. So are Tension and Compression, which 

represents the basic “genomes” of this interaction and are present within each structure from the 

simplest to the most complicated one. A structural form represents a physical manifestation of this 

invisible interplay, which, when in consonance with the natural flow of forces results not only in an 

economic but in a well proportionate and aesthetic structure – a work of art. Nowadays, the culture of 

putting unreserved belief on the results given by supercomputers slowly degraded in becoming a 

tradition. This paper calls for an increase to awareness within the community of structural engineers – 

by visiting some of the basic principles on which our profession holds on. 

 

Keywords: Structures, logic, compression, physical 

 

 

1 Introduction 

 

Natural phenomena occur in accordance to certain laws. In his well known book “On Growth and Form” 

[1], D’Arcy Thompson wrote: (“We learn and learn, but never know it all, about the smallest, humblest 

thing...”. Such is the way of learning, that even today, we are not sure if nature creates in a disciplined 

or in a chaotic and irregular way. Finding the truth remains the holy grail of science. Yet, the truth 

remains a very special “commodity” in our way of seeking - if not for something else, then just for the 

sake of being so difficult to find it. 

Referring to the civil engineering problems, nowadays one of the greatest challenges remains the 

imitation of natural phenomena and laws through modelling. Of course, we can tell that the truth has 

been achieved when obtained results both through mathematical and experimental findings come near. 

One of natural’s phenomena having a great impact on civil engineering structures is the gravity. During 

the design of an edifice one must never forget its influence. Therefore, when one seeks to be as 

“original” as possible he mustn’t underestimate the natural flow of forces, since the consequences could 

be catastrophic. Even the horizontal actions such as the seismic forces are a product of gravitational 

forces; in fact they do represent a certain percentage of them. 

Actually, everywhere around the world one can see a strong tendency of designing and building 

“spectacular” structures - bee it in the plane or in the height. And, without putting any rigid constrains 

on neither visual expressions nor architectural styles, we can stress that any building designed and built 

on excess of respecting basic principles such as: simplicity, regularity, symmetry, repetition and 

similarity through variation of forms [2- fs], cannot result to be in-line with neither resources in disposal 

nor general aesthetical expectations. 

 

 

2  Form and Mechanical Strength of a Structure 

A structural pattern is aimed at offering a global resistance versus external natural phenomena such as 

wind or earthquake and must fulfil the required level of performance. This global resistance of a 
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structure is composed, however, from localy supplied strengths, distributed throughout structural 

elements. 

That a structure’s various levels of resistance depends from its form, i.e., the arrangement of its parts is 

known a thousand years before the science on structures found herself put on modern rails [10 – Karl 

Eugene Kurrer], that is on fundamental mechanical principles. Before this so called discipline-formation 

period [10] the structural art was based on a culture established more on the culture of build-ruin-rebuild 

than a scientific one. It is impressive, however, even though our predecessors didn’t posses any 

knowledge of the above mentioned principles, they achieved creating magnificent works of art, which, 

even today, astound us with their elegance and beauty. The form and the three-dimensional 

configuration have a great influence on the strength of a structure towards external disturbances on the 

way to fulfil both the serviceability and no-collapse requirement. The selection of this form depends of 

course, from several parameters as well as constrains of different nature such as: cultural and social 

backgrounds, economic ones, state of know-how ect.  

 

𝑭𝒊𝒈. 𝟏. 𝟏 Left: A4 sheet of paper in plane (𝝆 = 𝟎); in the middle: A4 sheet given a certain curvature 

𝝆 = 𝝆𝟎; right: the generated cylindrical surface and the shear increase of the bearing capacity (𝝆 =

𝝆𝟎). 

Once this process in hands of a skilful structural designer, one can produce shapes and forms being in 

complete harmony not only with natural laws but in harmony with the nature itself and its surroundings. 

Let take for example, as shown in the 𝐹𝑖𝑔. 1.1 further below the case of a sheet of paper, which, when 

given a certain curvature 𝜌 becomes able not only to sustain himself, but is able to support objects 

exceeding several times his own self-weight. 

Where lays the secrecy of the increased bearing capacity of this primitive structure? It exactly lies in 

its change of shape, i.e., increasing of its stiffness through form alteration in the three-dimensional 

space. This is achieved through the increase of its curvature from 𝜌 = 0 (plane) to 𝜌 = 𝜌0 in space. 

Mathematically, this can be expressed through the expression given as per equation (1.1), whereas 

physically, this can be explained through the internal increase of bending capacity from a rather 

inexistent value 𝑀 ≅ 0 to a specific value 𝑀 = 𝑀0. 

𝑀
𝐸𝐼⁄ = 1

𝑟⁄ = 𝜌       (2.30). 

Important to the mechanical resistance are not only the form and its constitutive materials but the 

geometry and cross-section of its elements. Biostructures – the structures created by nature are a 

beautiful example to follow from the part of structural designer as their cross-sectional shape ensues 

from the evolutionary process of self-adaptation and natural selection [Darwin]. As an example it can 

be illustrated the wheat steam cross-section (𝐹𝑖𝑔. 1.2 right insert). To the question of why this happened, 

why did the Nature “chose” this cross-section, one can give a very simple answer: during his lifetime 

the wheat stem is submitted to wind actions coming from various direction and must adapt itself if it 

wants to survive, therefore there is no better response than tubular cross-section which has the same  
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𝑭𝒊𝒈. 𝟏. 𝟐 Left: cross-section in form of “𝜤”; middle: the tube; right: wheat stem’s cross-section 

– biostructure. 

 

 

module of resistance in all directions and a very good resistance towards torsion. Clearly, Nature did 

the right selection! 

 

It is of a special interest to us structural designers for this adaptation process to be decoded through 

some kind of comparative anatomy, in order to produce structural shapes that have not only achieved 

the required strength but in the same time the economy of mass and mater. To illustrate this, let us study 

one of the most simple and widely used cross-sections – the rectangular one. If we take-out the mass 

belonging to the proximity of the neutral axis, we obtain the structural shape in the form of 𝑰  consisting 

of flanges and the vertical web - widely used in metal structures (𝐹𝑖𝑔. 1.2 – left insert). Even though 

this small “surgery” brings an improvement as far as the stiffness of the cross-section regards, this is 

not satisfactory because this enhancement is spread through two “principal” axes (𝑦 − 𝑦 - in our case).  

In the case we continue further and let the 𝑰 profile rotate around its longitudinal axis (pole 𝑂, 𝐹𝑖𝑔. 1.2 

– middle insert), then the tube results (pole 𝑂, 𝐹𝑖𝑔. 1.2 – right insert). This is exactly what Mother 

Nature has chosen during the evolution, and the Engineer adopted it intelligently also! 

 

 

3 Tension and Compression 

As said before, natural phenomena are of a dual character. There is no better expression than that of a 

harmony between two phenomena contrary to each other, yet, complementary in order to form a whole. 

In Mechanics, the internal competition of this duality is manifested by the way of tension and 

compression. Beginning from the most primitive to the most complex structure, this two phenomena 

reign supreme.  

One of the best descriptions of this relation was given by R. Buckminster Fuller (𝟏𝟖𝟗𝟓 − 𝟏𝟗𝟖𝟑), 

[RBFuller] as follows: “Compression is inherently partial. Tension is inherently total”. 

Hereunder there will be given some illustrations in order to show this powerful interaction between the 

two phenomena, beginning from biostructures to the civil engineering structures. Later on some of the 

most renowned works in architecture, known not only for their aesthetical values but above all their 

structural efficiency shall be illustrated, with emphasis to the duality between tension and compression. 

There is no a better case in nature of a structure (bio-) working exclusively in tension than dowry’s leaf 

(𝐹𝑖𝑔. 2.1 – in the middle and right insert). On the other side - 𝐹𝑖𝑔. 2.1, left insert, the human body when 

taken as isolated, works exclusively in compression under the action of gravity. This action arises from 

the universal law of gravitation as given per expression (2.1) below: 

𝐹1,2 = 𝐹2,1 = 𝐺 ∙
𝑚1∙𝑚2

𝑟2        (2.1). 
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By treating the human body as a subsystem, it becomes one of the most perfect mechanisms in the 

universe (for as much as we know!) – a tensegrity structure [BF], i.e., a mechanism where the tension 

is continuous and in complete harmony with compression. 

In the 𝐹𝑖𝑔. 2.2, further below it is shown a dowry’s leaf, whilst at the right insert of the same figure one 

can see the clover blossom (trifolium pratense) submitted to the morning dew’ load. From the biology 

we learned the utility of the leaf, which are the absorption of carbon dioxide and the production of 

oxygen through the photosynthesis. An important fact, here, it is of how Nature designed the leaf 

structure: here, one of the most fundamental Nature’s principles can be seen – the generation of minimal 

plane surface. The reason for this is quite evident: Nature wants to expose the leaf cells as much as 

possible to the sun’s rays, in order to absorb as much carbon-dioxide as possible and to produce as much 

needed oxygen as possible. Beautifully engineered, not! 

As far as the right insert on the figure we have one another case of a beautifully crafted structure: the 

morning dew represents a sphere which is created through surface tension phenomena and represent a 

minimal area, which is the smallest surface generated versus the given volume – see expression (2.2) 

 

 

 

 

 

 

𝑟 = 𝑆 𝑉⁄ = 4 ∙ 𝜋 ∙ 𝑟2 ((4 3⁄ ) ∙ 𝜋 ∙ 𝑟3)⁄ = (1 3)⁄ 𝑟   (2.2) 

 

 

 

 

 

 

 

 

𝐹𝑖𝑔. 2.2 Left: human body and the forces acting on it; middle: dowry’s leaf; right: clover blossom 

(trifolium pratense) submitted to the morning dew’ load. 
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𝐹𝑖𝑔. 2.3  Left: Ctesiphon palace, 1st century BC; middle: man leaning on the wall - analogy; right: Great 

Pyramid of Giza, 2500 BC. 

 

3.1 Compression 

From ancient times to the present day, one of the most used structural forms was the vault or in its 

simplest of forms - the arch. The main characteristic of the vault is that it works mainly in compression. 

In the 𝐹𝑖𝑔. 2.3 below, one can see one of the most utilized cylindrical vaulted structures – mainly 

executed in antiquity. It is clearly seen that its thickness increases gradually towards the supports in 

order to compensate the horizontal thrust of the vault, that is, the deviation of the resultant of internal  

forces (funicular polygon). This act although highly effective in insuring the necessary vault stability 

was done empirically and was not based in any technical or scientific knowledge. What is beautiful with 

this detailing is not just the stability in a pure engineering sense – it is the visual expression of elegance 

and psychological assurance for the user that the vault is strong and won’t fall down. 

The 𝐹𝑖𝑔. 2.4 below shows the two-hinged arch, which for the case of a uniformly distributed load has a 

funicular polygon whose form can be mathematically described through a second degree parabola 

(𝐹𝑖𝑔. 2.4 −  𝑎). In the case the uniform load acts on the left-half or the right-half of the arch, then 

funicular polygon adapts himself the position of external loads and descends or rises-up in order to 

permit to the arch to compensate the deformations caused by it (𝐹𝑖𝑔. 2.4 − 𝑏, 𝑐). 

 

 

 

 

 

 

 

 

 

 

𝐹𝑖𝑔. 2.4  𝑎) Two-hinged arch under the uniformly distributed loads 𝑝 + 𝑔; 𝑏 & 𝑐) two-hinged arch 

under the action of antimetric load 𝑝, dashed line - undeformed arch, continuous line – deformed arch. 

The geometry (the form) of the arch and the mechanical efficiency are closely related between them. 

Thus, the factors that have the most influence on the cross-sectional dimensions of the arched element 

are the slenderness ratio 𝑙 𝑓⁄ as well as the ratio (𝑝 + 𝑔) 𝑔⁄ , where: 𝑝 - is the variable uniform action 

and 𝑔 is the sum of all permanent actions acting on the structure (self weight plus super dead loads). 

A well known problem being present in arched structures is the loos of stability which is usually solved 

by introducing the stiffening beam (intrados or extrados) as shown in the 𝐹𝑖𝑔. 2.5 below. In the figure 

one can witness one of the most celebrated cases in the history of theory of structures – the three-arched 

bridge of Robert Maillart [Salginatobel]. The main characteristic of this beautifully engineered artwork 

is that the extrados and the intrados of the reinforced concrete arch does in fact represent the envelope 

of the funicular curve – just in the way as explained above in the 𝐹𝑖𝑔. 2.4 −  𝑏, 𝑐. 
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𝐹𝑖𝑔. 2.4 𝑎) Three-hinged arch – envelope of funicular curves; 𝑏) Sälginatobel bridge, Schiers, 

Graubünden/CH, 1930 [Robert Maillart found]. 

 

This scheme and the photo given in the 𝐹𝑖𝑔. 2.4 −  𝑏 [Robert Maillart found.], only stamp the hypothese 

raised further above: a structure (work of art) shall be able to fulfil aesthetical expectations only and 

only then when it has fulfilled basic criteria imposed by physical (Nature’s) laws. This wonderfully 

engineered structure fulfils both of them: this is why it is adored both from the neophyte and the 

structural engineers. Capolavoro – in terms of Bruno Zevi [Capolavori del XX secolo]! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐹𝑖𝑔. 2.5  Left: nomad’s tent – cable net; middle: equilibrium of forces – child held by parents; 

right: primitive footbridge – structure working principally in tension  
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3.2 Traction (tension) 

The phenomena of traction (tension) lie at the very heart of dualism in nature and could be explained 

through Newton’s Third Law or even (as given further above) by the universal gravitational law 

(expression 2.1). Naturally, this is valid only for the phenomena occurring outside the context of 

relativistic world, that is, for speeds much lower than the speed of light (~300000 𝑘𝑚/𝑠). 

In the theory of structures this is of course valid. 

One must stress that within a cross-section of a three-dimensional structural element – six internal 

effects of actions [Eurocode 0] appear. In the simplest of the cases (pure flexion) – two components 

results: traction and compression. Therefore, both tension and compression are incontournable to each 

other: where there is compression, there must be compression and vice versa. 

An important fact here is: whilst structural elements submitted to compression requires sometimes 

requires a rather considerable amount of matter, those under the action of tension does require a very 

small amount of it. In some cases, as in the case of interplanetary attraction – there is no need for matter 

at all! 

To turn back to the civil engineering structures, whilst bearing capacity of structural elements submitted 

to compression is constrained by their slenderness, the bearing capacity of structural elements submitted 

to the tension is borned by the mechanical resistance of their constitutive materials. 

Now, the structural elements corresponding the best to the traction (tension) is the cable, which is one 

of the most used structural elements. Having into consideration its measures as well as the high degree 

of flexibility, there is only traction effort that can arise within it. This means the cable doesn’t possess 

any flexional or torsion stiffness. Exempt from this is of course the prestressed cable or net of cables 

 

 

 

𝐹𝑖𝑔. 2.6 below, shows three different structures, working principally in tension. On the left insert of the 

figure it is shown a nomads tent [Wikipedia] which represent nothing else than a set of three-

dimensional net of cables very near to each other with different curvatures in two orthogonal directions, 

whereas in the right insert one can see a primitive suspended bridge – made by nearby-found materials. 

 

In the middle insert of 𝐹𝑖𝑔. 2.6, one can see a sketch (made by the author of this paper), which does 

speak for itself, and illustrates the case of one of the most sophisticated biostructures in the universe (as 

such as we know) – the human body, together with the Cremona’s polygon of forces shown as an insert 

within the figure in form of a triangle of force vectors in equilibrium. The external action is modelised 

by the child 𝐺1 held by two parents 𝑆1 and 𝑆2. 

Next in the 𝐹𝑖𝑔. 2.7 one can see the cable submitted to the action of a uniform load 𝑔 + 𝑝, both for 

the symmetrical case and the antimetric one together with the deformed shapes the cable would take. 
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𝐹𝑖𝑔. 2.7  Suspended cable over two supports at the same level: a) external actions 𝑔 + 𝑝; b) variable 

antimetric action 𝑝; c) variable antimetric action 𝑝; continuous line - deformed shape, dashed line – 

undeformed shape of the cable. 

This short discourse will be closed by one of the most eminent cases in the history of the structural 

engineering – the “Tower Bridge” in London/UK. One of the most notable characteristics of this 

structure is the so called “fluxionally rigid” truss cable. The 𝐹𝑖𝑔. 2.8 below shows the extrados and the 

intrados of the cable –representing the envelope of the funicular polygon connected together by a system 

of vertical struts as well as diagonal ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐹𝑖𝑔. 2.8  𝑎) Cantilevered beam; 𝑏) the mutual position of compression (dashed line) and traction (continuous  

line) for the case of dinosaurus; 𝑐) dinosaurus skleton [Wikipedia] – sketch shows only compression lines. 
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𝐹𝑖𝑔. 2.9  Flexionally rigid – truss cable: a) the principle of stiffening and the analogy with Sälginatobel 

bridge; b) The “Tower Bridge” – London/UK [Ref]. 

 

4 Compression and Traction – comparison with biostructures 

In the 𝐹𝑖𝑔. 2.8 hereunder, one can see the analogy between the cantilevered beam and the skeleton of 

dinosaurus. It is important to stress the similarity existing between the bending moment diagram of this 

very simple structure, and the shape of the skeleton. Here, one must stress the fact that only the 

components working under compression are visible (the bones) – since, organic parts representing the 

ligaments, muscles and tendons are gone long time ago. 

 
 

 

5 Conclusions 

In recent decades, we're witnessing major technological developments. In civil engineering in general, 

and in structural engineering particularly, powerful hardware and software makes us possible to achieve 

what have been unimaginable decades ago. Creating of 3D mathematical (analytical) models has 

become a routine, while super-fast processing and post-processing is done in a matter of minutes if not 
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seconds. There is a tendency of putting too much belief in these results and in so doing; an inexperienced 

structural engineer can fast get into the trap of “beautiful” results given by the machine.  

This paper represents a temptation to call for “awareness” within the community of structural designers 

(and not only), by the as I have named it:”return to the origin”, or return to the basics on which our 

science of structures lays upon, that is the comprehension of the two principal genomes of the internal 

effects of actions in a cross-section of a structural element. 

Nature gives us plenty of beautiful examples of how animals, plants ect., are growing and forms and 

shapes they are acquiring during this process – the biostructures. If we take a closer look at how these 

creatures are built, then, we could come to the conclusion that they are built by the same principles as 

are the civil engineering structures. 

This paper, represents a modest contribution to this vast and unfortunately very little studied field which 

could become a source of great inspiration for structural engineering community. 
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