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Abstract. In this paper is presented an algorithm for solving 3SUM problem efficiently in general 

computation model. The algorithm is based on sorting and splits the task into sub-tasks where this 

approach enables the algorithm to run concurrently at the high-level of computing. The algorithm is 

O(n2) and running sequentially achieves at least ~1/5 n2 number of basic necessary accesses of data 

structures. In this paper is also presented a comparison of running performances in practice between the 

new algorithm and the current most famous algorithm for 3SUM which is in-place and also based on 

sorting. 

 

Keywords: 3SUM, Concurrent 3SUM, Algorithm, Concurrent Approach 

 

 

1   Introduction 

 
In computational complexity theory, the 3SUM problem asks if a given set of n integers, each with 

absolute value bounded by some polynomial in n, contains three elements that sum to zero. [1,2,3]. 

The generalized version, rSUM, asks the same question of r elements. [1,2,3]. A naive solution would 

be to search for all triples with three indexes where time complexity would be O(n3). Better algorithm 

should achieve it in O(n2).There is a  sub-quadratic algorithm for special models of computation. [5].  

“There are a algorithms based on sorting with partial information”. [1]An algorithm for solving 3SUM 

is presented based on the Fast Fourier Transformation taking into assumption that absolute values of n 

numbers are smaller than n2/log n. [1,6].Solutions for general version of the problem are found in [1][2]. 

“The 3SUM problem was initially set in [2]. Gajentaan and Overmars collecteda large list of geometric 

problems, which may be solved in an order of quadraticcomplexity, and nobody knows, how to do it 

faster [2].”[1].3SUM is an important problem as it still remains to be an open problem in theoretical 

computer science. 3SUM is found all over computational geometry.[2].The algorithm presented on this 

paper is still quadratic but it is at least three times faster than the best known quadratic algorithm which 

is presented in [7]. Running concurrently the algorithm would be additionally three to four times faster.  

In terms of memory complexity the algorithm is O(n). It consumes additional linear memory but 

improves running performance by a factor. 

 

 

2   The algorithm 
 

Suppose the input array is S[0 … n-1] of size n. First S is sorted and then is separated into arrays of 

negatives and positives.   

Let p be the number of positives and the array of negatives N[0 … n-p] in descending order and also 

the array of positives P[0 … p] in ascending order.  

Additionally let HTP(k,v) be the HashTable of Positives and HTN(k,v) the HashTable of Negatives, 

where k is the key and v is the value.  

All elements of P are put as keys in HTP in ascending order and it’s indexes as values, also all elements 

of N are put as keys in HTN in descending order and it’s indexes as values in ascending order, so i = 

HTN.get(N[i]) .  

 

The algorithm first checks for each negative number to every positive if there exists the third positive 

number to sum up to zero and vice versa. 
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for i:=0 to n-p { 

  a := N[i] 

  for j:=0 to p { 

    b:= P[j] 

    c:= -(a+b) 

    if c<b then break inner loop 

    if HTP contains key(c) { 

      if b=c and j = HTP.get(c) then break inner loop 

      else save triple a,b,c 

    } 

  } 

} 

for i:0 to p { 

  a := P[i] 

  for j:=0 to n-p { 

    b := N[j] 

    c := -(a+b) 

    if c>b then break inner loop 

    if HTN contains key(c) { 

      if b=c and j = HTN.get(c) then break inner loop 

      else save triple a,b,c 

    } 

  } 

} 

The statement if b=c and j = HTP.get(c) enables the algorithm to distinguish duplicate elements so all 

elements are considered as unique.  

If the input is distinct simply that if statement can be removed and inside the nested loop the pruning if 

statements must be modified to if c<=b and if c<=b. 

 

2.1   Concurrent approach  

 

The concurrent approach to solve the task requires separation of the input into odd and even numbers 

besides into negatives and positives. 

 

Suppose indexes 1,2,3,4 represent simultaneous processes, so the algorithm would be: 

  

Assume the input is the set S ∈ ℤ and a, b, c, d ∈ S where a ∈ {2n < 0 : n ∈ ℤ},  

b ∈ {2n+1 < 0 : n ∈ ℤ}, c ∈ {2p ≥ 0 : p ∈ ℤ} and d ∈ {2p+1 ≥ 0 : p ∈ ℤ}. 

1. ∀(b,d) check if ∃ -(b+d) and ∀(b,c) check if ∃ -(b+c) 

2. ∀(a,c) check if ∃ -(a+c) and ∀(a,d) check if ∃ -(a+d) 

3. ∀(d,a) check if ∃ -(d+a) and ∀(d,b) check if ∃ -(d+b) 

4. ∀(c,b) check if ∃ -(c+b) and ∀(c,a) check if ∃ -(c+a) 

 

The above algorithm contains eight loops which four of them would run at the same time. The first loop: 

∀(b,d) check if ∃ -(b+d), checks for every odd negative to every odd positive if there exists an even 

positive third pair to sum up to zero. The algorithm is searching on different groups of elements at the 

same time possibly speeding the algorithm up to 400%. 

 

 

3   The comparison 
 

The famous algorithm is as follows: [7]. Let’s assume input array is S[0 … n-1]. 

Sort(S) 

for i:=0 to n-3 { 

  a := S[i] 
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  k := i+1 

  l := l-1 

  while(k<l) { 

    b := S[k] 

    c := S[l] 

    if a+b+c = 0 { 

      save triple a,b,c 

      k := k+1 

      l := l-1 

    } 

    else if a+b+c > 0 then l := l-1 

    else k := k+1 

  } 

} 

  

Fig. 3. In this picture is compared the execution time in general computers with different random input 

for both algorithms. Algo_1 is the presented algorithm and clearly beats the in-place algorithm. The 

average running time is taken from different machines and the graph represents the size of input n in 

proportion to CPU time in nanoseconds. 

 

 

4 Conclusions 
 

Using distinct input and HashSet lookups the algorithm is supposed to run even faster. 

Further improvements can be done if somehow is possible to know if in small ranges between b and c 

there is no other pair to sum up to 3 so those indexes could be easily skipped. When c is found on 

HashMap, the associated value which is index can be checked if between b and c is only one element 

where it can be safely skipped. Using nested HashMaps and Trees maybe it might be possible to skip 

few more indexes. 
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