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Developing a New Total Sediment Transport Formula 

Davut Okcu1, Sokol Xhafa1, Hatice Okcu 

1UBT- Higher Education Institution, Str.  Lagjja KALABRIA p.n., 10000 

Prishtinë, Kosovë; 

davut.okcu@ubt-uni.net, sokol.xhafa@ubt-uni.net, htcklc43@gmail. 

Abstract.The aim of this study is to derive a new total sediment load formula which is more 

accurate and which has less application constraints than the well-known formulae of the 

literature. There are many sediment transport formulas in the literature but most of them are 

derived from small data sets of natural rivers or experimental designs. Each formulation has its 

own restrictions, which depends on the original dataset of that study. None of them have gained 

universal acceptance.To achieve this aim, a wide range of dataset is compiled which includes 

both experimental lab(flume) data and Natural river data so that a very large range (of 

parameters) has been achieved. Then this dataset is used to generate a new formula. Five most 

known total sediment transport formulae, which are approved by American Society of Civil 

Engineers (ASCE) are used for benchmarking. The dimensionless parameters of these widely 

used formulae are used as inputs in a new regression approach. The new approach is called 

Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and 

testing all possible combinations of the input variables and selecting the best subset. All the 

input variables with their second and third powers are included in the regression to test the 

possible relation between the explanatory variables and the dependent variable. While selecting 

the best subset a multistep approach is used that depends on significance values and the 

Multicollinearity degrees of inputs. Different goodness of fit statistics are used as they represent 

different perspectives of the model accuracy. After the detailed comparisons are figure out, 

PBSR is the most accurate equation that is also applicable on both flume and river data.  

 

Keywords: River Hydrology, Sediment Transport, Total Sediment Load, Polynomial Best 

Subset Regression (PBSR). 

 

 

Introduction 

Sedimentation refer to the motion of solid particles, called sediment. The natural processes of 

erosion, transportation and sedimentation have been active throughout geological time and have 

shaped the present landscape of our world. Today, they can cause severe engineering and 

environmental problems [1]. In alluvial hydraulics, sediment has been defined as rock, mineral 

particles such as clay, sand, silt, gravel, and boulders transported or moved by the flowing 

water. The main sources of sediment production are the weathering of rocks, erosion by the 

flow of water over soil surfaces, channel bed erosion, and bank caving. Traditionally, sediment 

is decomposed into wash load or river load depending on the particles origin. Another 

classification is done as suspended sediment load or bed load and these definitions are related 

with the movement of the particles. Sediment transport prediction is vital to water engineering 

problems like dam management, scoring and bridge problems, irrigation channel sedimentation, 

economical life of reservoirs etc. It is important to possess a reasonable measurement of 

sediment transport rate due to its importance in the planning, design and management of 

hydraulic and hydrological projects [2]. By the perspective of environmental engineering, the 
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moving sediments also affect the water quality of river systems and act as a transport 

mechanism for materials such as pesticides, heavy metals, nutrient, decomposable organics, and 

bacteria. Hence, the phenomenon of sediment transport is of great engineering importance, and 

together with its related problems, governs a large number of situations that are of major 

concern to the civilized man.  

Another source of difficulty in the development and assessment of sediment load predictors is 

the existence of uncertainty and inaccuracy in sediment transport data. This is due to limitations 

in measurement equipment and the large temporal and spatial variations of concentration and 

transport rates of sediment particles in natural channels. Usually a limited number of samples 

are taken from the channel, which may not be truly representative of the entire flow. In general 

the samples are taken from the same river for the same cross section within a time period. This 

data creates a time series (daily, monthly and annually). In literature there are many studies in 

time domain [3]. 

 

 

Literature Review 

In 1950, Reference [4] introduced his bed-load function, which is based on the probability 

concept. He estimated bed load for different size of sediments found on the bed. Reference [5] 

proposed a relationship that give both quantity and quality of total, suspended and bed loads as 

functions of stream and sediment characteristics. Reference [6] developed graphical solutions 

for total load based on laboratory and field data. Reference [7] evaluated works of [6] on 

Amazon, Orinoco, and Mississippi Rivers. In their analysis, they found reference [6] equation 

overestimated the unit sediment discharge for the rivers under study.  

The total sediment load includes the wash load and the bed-material load. The bed-material 

load consists of bed-load and suspended load. Generally, two approaches are available for 

predicting the bed-material load in a river. One is to estimate the bed-load and suspended load 

in separate calculations. This is based on the fact that the hydrodynamics of each mode of 

sediment transport is different. The methods developed by [4]-[8].  

Reference [9] has approached the sediment transport phenomenon from the point of view of the 

rate of potential energy expenditure of the flow. Reference [9] defined the unit stream power, 

which is the product of mean flow velocity and energy slope (VS), as the rate of expenditure of 

flow potential energy per unit weight of water. From the analysis of a massive data bank, 

Reference [9] found that Unit stream power is the best dominant variable, which could be 

related to the sediment concentration.  

Reference [10] introduced the power concept and similarity principle to obtain sediment 

transport function. Reference [10] formula was developed based on flume data, using sediment 

size of bed material as input. 

Reference [11] had introduced sediment transport functions in terms of three dimensionless 

groups namely, size, mobility and transport rate of sediment. His functions are based on flume 

data carried out with uniform or near uniform sediment with flow depths up to 0.4 meters.  

Reference [12] tested 14 formulas using a compendium of sediment transport data from the 

laboratory and field records. He concluded that Reference [10]-[11]-[12] formulas are 

acceptable. 

Most total load equations are actually total bed material equations. A sediment transport 

equation based on universal steam power is presented for the prediction of bed material 

concentration of the rivers or streams by [13]. Reference [14] later modified his unit stream 

power formula for the computation of total bed-material load in a sediment-laden river with a 

high concentration of fine suspended material. 



 

Reference [14] presented a formula to estimate total bed material load in a sediment laden river 

with high concentration of fine material. They derived their sediment concentration functions 

using multiple linear regression analysis of laboratory data, based on unit stream power theory. 

Reference [15] had proposed the use of energy concept in the development of sediment 

transport equation based on universal stream power by [9]. According to them, this has 

advantage in eliminating the energy slope as a parameter. They had confirmed that the 

relationships derived from flume experiments of shallow flows should not be universally 

applied to large rivers with deep flows.  

Reference [16] recommended six total sediment load formulas; [9], [10], [11], [12], [15], [17].  

Reference [18] developed a mathematical model, based on the kinematic wave theory that 

predict the evolution and movement of bed profiles in alluvial channels under the equilibrium 

conditions. In order to discretization the equations, the explicit finite difference method was 

used. To test the model, flume and field data was used. Then, they improved the model, for 

non-equilibrium conditions. 

Reference [19] developed a total bed material formula by using multiple linear regression 

model. The authors focused on high gradient river sediment transport by using Regression 

models [20]. 

 

 

Research Methodology 

The dataset is compiled from many different sources those includes observational river data and 

the outputs of many experimental studies. Reference [12] produced one of the most 

comprehensive compilations of existing flume and field data in this area, and the present work 

is based on those data, which consist of both field and flume type data. Initially, each data set 

has complete records of the flow discharge (Q-m3/s), channel width (B-m), flow depth (H-m), 

hydraulic slope (S), median sediment size d50-m), sediment gradation (σ), specific gravity of 

sediment (G), temperature (T-C). Sediment concentration (C-ppm) is a function of these 

parameters. All parameters are derived by using these attributes. In the model many non-

dimensional variables are used that is produced by using Buckingham pi theorem. 

In Table 1, descriptive statistics of river/lab dimensions and some sediment parameters are 

presented. The descriptive statistics of the dataset indicate that the range of the river discharges 

are very high. As shown in the field part of Table 1 the widest river is about 1100 m and the 

narrowest river is only 0.35 m width.  So the range is very high same as the discharge values. 

On the other side within the experimental designs the widest and the narrowest designs are 2.44 

and 0.31, respectively, the range of sediment concentration (C_ppm) and d50_mm are very 

large for flume data. 

All the variables are included in the analysis with their first, second and third order force 

therefore 30 parameters are used for best subset selection process. While taking the powers (of 

the parameters in using them in regression as inputs) increases the nonlinear estimation 

capability of the model, this process increases the collinearity problem in the developed models. 

Like any data mining project, before developing new models the dataset needs to be prepared 

for the analysis. In this manner, data partition and data transformations are performed. Before 

the model development process dataset is divided into two sets as training (70%) and validation 

(30%). The validation part is not used in model development. The models are compared in 

validation part considering the lab data (44%) and field data (56%) partition. Total number of 

data set is 2100, [lab data (927) and field data (1173)]. After data partition, Best subset 

regression models are modified and used to generate a new formula. As known Regression 

approach is an alternative to estimate the sediment load when there is no sediment data, such as 

particle size, to use a predictive sediment transport formula. 

 



 

 

 

 

 

Table I: Descriptive statistics of raw dataset. 

  

 

Valid 

N Mean Median Min. Max. Range 

Perc. 

%10 

Perc. 

%90 

Std. 

Dev. 

F
IE

L
D

 

Q-(m3/s) 1173 1505 134.78 0.00 28826 28826 2.86 4899 3824 

B-(m) 1173 181.01 82.60 0.35 1109 1109 13.72 491 235 

H-(m) 1173 3.001 1.703 0.034 17.282 17.2 0.316 9.327 3.607 

S 1173 0.685 0.720 0.006 6.690 6.684 0.042 1.500 0.685 

d50_(mm) 1173 0.740 0.323 0.083 3.400 3.317 0.161 2.204 0.821 

C-(ppm) 1173 522.5 200.24 5.61 5830 5824 44.00 1420 847.7 

L
A

B
 

Q-(m3/s) 927 0.13 0.05 0.00 2.08 2.07 0.01 0.36 0.19 

B-(m) 927 1.12 0.91 0.31 2.44 2.13 0.49 2.44 0.64 

H-(m) 927 0.147 0.125 0.032 0.585 0.553 0.064 0.287 0.083 

S 927 0.002 0.002 0.000 0.011 0.011 0.001 0.003 0.001 

d50_(mm) 927 0.416 0.375 0.100 1.500 1.400 0.150 0.930 0.263 

C-(ppm) 927 875.76 249.60 2.90 12900 12897 26.00 2480 1552 

T
O

T
A

L
 

Q-(m3/s) 2100 840.50 3.84 0.00 28826 28826 0.02 2129 2953 

B-(m) 2100 101.60 19.20 0.31 1109 1109 0.70 390 197 

H-(m) 2100 1.7408 0.3290 0.0323 17.28 17.2 0.076 6.233 3.046 

S 2100 0.3832 0.0438 0.0002 6.6900 6.690 0.001 1.290 0.614 

d50_(mm) 2100 0.5969 0.3435 0.0830 3.4000 3.317 0.150 2.204 0.658 

C-(ppm) 2100 678.44 213.05 2.90 12900 12897 33.91 1829 1223 

 

Reference [21] used possible-subset regression with stepwise regression. The authors pointed 

that there is a limitation in stepwise regression search approach which is it presumes there is a 

single "best" subset of X variables and seeks to identify it. Nevertheless, there is often no 

unique "best" subset. Therefore, for huge input numbers best subset solution might give the 

most parsimonious model if the comparison parameter is sensitive to input number. 

The Best subset regression approach is adopted to fit and test (significance, F- Anavo) all 

possible combinations of the input variables in a regression equation and to select the best 

solution. The new approach is called Polynomial Best Subset Regression Model (PBSR). The 

aim of the polynomial design is to investigate if there is any nonlinear relationship between 

model inputs and the output by creating the nth power of the attributes and using them in the 

model considering the correlation between them.  So n is taken as 3 in this study. In this study 

10 non-dimensional variables are used as a starting point.  In fact, for thirty parameters, 

potentially 230 models (1073741824) could be developed. Before initiating the permutation 

process of the algorithm a constraint is applied to decrease the possible number (potentially 

possible) of the models. In the study well known collinearity diagnostic Variance inflation 

factor (VIF) is used to eliminate the models initially (VIF >3000). After this elimination 

possible 53009101 variations (different input combinations) are tried and compared to each 

other. In this process, the adjusted R2 is used to select the most parsimonious and the most 

accurate models. But the selected models still could have many collinear parameters. To 

overcome this problem the algorithm is modified to select the most accurate model while model 

input parameter selection is suppressed to decrease multicollinearity problem. The model 

algorithm is repressively adopted to eliminate the combinations (input sets) which includes very 



 

high VIF (>10) valued parameters by optimizing delta parameter that is used for sweeping 

operator in computation of reverse matrix. Different values of sweeping operators are tried 

between 10 and 1. These variables have been selected within the non-dimensional parameters 

of the 5 well-known formula in the literature. These formulas are 1-Engelund and Hansen’s 

(1967) (EH), 2-Ackers and White’s (1973) (AW), 3-Yang’s (1973) (YANG), 4-Karim’s (1998) 

(KARIM) formula, 5-Molinas and Wu (2001) (MW) formulas. 
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Where  represent of the symbols are; sediment concentration: (C-ppm), energy slope (S), flow 

depth (H-m), median sediment particle size (d50 -m), submerged specific gravity (Gs -1), 

velocityof water (U –m/s), shear velocity (U* -m/s), gravitational acceleration (g- m/s2), 

settling velocity for a particle (w – m/s), water kinematic viscosity (v -m2 /s). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Histogram of target Concentration (ppm), a- Raw data, b-Transformed data. 

 
To ensure the normality assumption of regression models, the dependent variable (C-ppm) is 

transformed by natural logarithm. The histogram of the concentration of carried sediment is 

presented in Figure 4.1. As shown in the figure after transformation the probability density 

function become close fit to the normal curve, indicating the accordance for the use in 

regression models. 

 

 

Results and Comparison of the New Formula 

New Proposed Formula (PBSR) 
The output formula of the PBSR model is (1); 

3,239 0,005
34,45

0,066 0,146

P J
C

L R


                                                                     (1) 
Where represent of the parameters in the equation (1) are C: total bed-material concentration in 

parts per million by weight, P: dimensionless particle parameter, J: dimensionless energy slope 

parameter, L: dimensionless length parameter, and R: dimensionless particle Reynold 

parameter, which are defined as (2): 
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Where represent of the parameters in the equation (2) are   U: velocity of water, S: energy 

slope, Gs-1: the submerged specific gravity, d50 : the median size of particle diameter, H: 

height of water, U*: shear velocity, that is calculated equation (3); 

*U grS
                                                                                       (3) 

Where represent of the parameters in the equation (3) are g: gravitational acceleration, r: 

hydraulic radius, S: slope.  

So it can be concluded that this formula (1) can be used for the rivers which have a slope 

between 0.0002 and 6.69, Particle diameter-d50 with 0.083- 3.4 mm, concentration between 2.9 

- 12900 ppm.   

Model Evaluation and Comparison Criteria 

In literature, there are many statistics to compare the models. In general these statistics are 

known as “Goodness of fit statistics”.  These statistics are useful to understand how model 

capture the real world or at what points the model has a bias. Therefore each of them have 

different focus points. All the models are compared by using the validation (not used) data.  

According to Reference [22], model validation is the process of demonstrating that a given site-

specific model is capable of making “sufficiently accurate” simulations, although “sufficiently 

accurate” can vary based on project goals [23]. On the other hand, classical scatter diagrams are 

very useful to see where model underestimates or overestimates the real data (observational 

data).  

In this study beside scatter plots; correlation coefficients (r), Nash-Sutcliffe efficiency (NSE), 

and Logarithmic transformation variable (e) and Adjusted R2 statistics are used to compare the 

model accuracies. Additionally the error statistics Mean absolute error (MAE) and Percent bias 

(PBIAS) are used to examine the error perspective. All used statistics have different 

perspectives and focus on a partial side of evaluation. 

By using the determined model fit statistics, new proposed equation (1) and the benchmark 

model outputs are compared in validation dataset. The formula restrictions of the models are 

used in comparison process. Additionally, predictive capabilities of the models for field and lab 

data are investigated separately. 

Validation whole data set comparisons 

For the validation dataset the determined model performance statistics are given in Table II. 

According to table EH, AW and YANG formulas have bad performance in the sense of all 

criteria. Negative big values of NSE indicate that these three models are worse than average 

base models. The scatter plots of these models are given in Fig.1. As understood from 

Maximum Absolute Error statistics, these models produce very high inaccurate predictions so 

these unsignificant prediction decrease the performance of model sharply. According to the 

table 5.2, by the e and PBIAS the PBSR model tends to make underestimation while the MW 

tends to make overestimation.  For mixed validation data (Field+Flume) the best two models 

are PBSR and MW. When these two are compared, by all of the performance indices, the 

proposed model PBSR outperforms the others and the MW is relatively successful. 



 

 

 

Table II: Model comparison statistics for validation dataset. 

  PBSR Karim MW EH AW Yang 

Correlation 0.92 0.36 0.90 0.01 -0.02 0.02 

R. er. mean 0.54 14.02 4.59 2775 20651 167 

e -0.01 0.81 0.53 1.99 0.88 1.30 

NSE 0.82 -43.76 0.71 -23856 -3976 -4834 

PBIAS 0.68 -556 -9.49 -35666 -5430 -5795 

Adj. R2 0.846 0.119 0.810 -0.014 -0.008 -0.012 

Max AE 3989 53607 1726 98831 22080 83189 

Median AE 91 1703 393 637769 691 45673 

Mean AE 287 4464 448 46625 41594 66418 

 

 

Figure 1: Scatter plot of PBSR-KARIM-MW for validation. 

 



 

Model comparisons for Field dataset. 
The models are compared with their field data (within validation set) predictive capacities. 

Table III, represents the determined statistics of the models for field data. In comparison 

process only validation data is used and the specific restrictions of the models are considered. 

The field data performances of the EH, AW and YANG are very bad estimation. The NSE 

statistics of these three are all negative and the correlation coefficients are almost zero. Mean 

relative errors are huge when compared to the other models (PBSR, KARIM and MW).   For 

field data best two models are PBSR and KARIM. 

 

Table III: Model comparison statistics for field dataset. 

  PBSR Karim MW EH AW YANG 

Correlation 0.86 0.84 0.28 0.30 -0.02 0.41 

R.Er.mean 0.54 24.05 2.97 4661 37043 302 

e 0.01 1.32 0.56 3.27 1.41 2.26 

NSE 0.51 -217 -0.54 -611 -1942983 -2313 

PBIAS -13.3 -1470 -4.67 -9071 -1414486 -1424 

Adj. R2 0.74 0.71 -0.25 0.07 -0.01 0.15 

Max AE 3989 53607 567 9883 22080659 83189 

Median AE 81.7 3665 453 8578 6350 95710 

Mean AE 250 7756 426 7845 7460815 11759 

 

The correlation coefficients and the Adjusted R2 values of PBSR and KARIM are close to each 

other. Strangely the NSE value of KARIM is negative and high. This means that the model is 

worse than the base average model. KARIM gives very high overestimations for most field 

data. But the variations of KARIMs’ predictions are synchronous with observations. This is 

why the correlation coefficients and the Adjusted R2 values are high. However, NSE and some 

other model comparison criteria detect this critical point. The PBIAS value is very high and 

negative (-1470) indicating that the model overestimates, the “e” (1.32) is positive and close to 

the “e” value of AW (1.41). So after detailed examinations it can be concluded that for field 

data set the proposed PBSR formula outperforms all the others. 

Model comparisons for Flume (Lab) dataset. 

The performance statistics of PBSR, KARIM and MW are close to each other. The ranking for 

all fit statistics of table IV is PBSR, KARIM and MW. As seen from the figures KARIM and 

MW formulas give high deviations for large values of sediment concentration. For Flume 

dataset PBSR, KARIM and MW give better performance than others (EH, AW, YANG) (Table 

IV), (Figure 2). By correlation coefficients and Adjusted R2 values these three models (EH, 

AW, YANG) seems they cannot capture almost nothing in the variation of the observed lab 

data. But this immediate result may not be completely true, since these statistics (like many 

others) are very sensitive to extreme data. For example after the restrictions of EH formula in 

validation dataset there exist only 154 data and for only 7 data the EH model produces 

extremely huge values. Because of this the correlation coefficient and the Adjusted R2 value 

are approaching zero. If these 7 data points are eliminated from the dataset, then the correlation 

coefficients rise to 0.87 (from 0.03). However, these seven points are completely concordant 



 

with the restrictions of the formula; all the attributions of these 7 cases are within the restrictive 

boundaries of the formula. 

Table IV: Model comparison statistics for flume dataset. 

  PBSR KARIM MW EH AW YANG 

Correlation 0.95 0.93 0.90 -0.03 0.07 0.005 

R. Er. mean 0.55 1.49 4.87 174.30 25.93 14.06 

e -0.03 0.18 0.53 0.22 0.22 0.21 

NSE 0.89 0.84 0.76 -8866 -561 -229 

PBIAS 9.40 12.03 -12.48 -1398 -529 -538 

Adj. R2 0.90 0.87 0.81 -0.03 -0.01 -0.03 

Max AE 3107 6643 1726 953505 665133 172068 

Median AE 118 152 373 154 185 205 

Mean AE 333 352 452 27259 5708 8416 

 

Figure 2: Scatter plots of flume data in validation, (PBSR-KARIM-MW). 



 

 

Conclusion 

In this study, 10 non-dimensional parameters of the sediment transport are used with their 

second and third order powers to capture nonlinear relationships. Since the parameters are 

generated from their powers there is a high correlation within the input dataset. The new 

formula is compared with 5 well known sediment formulae in the literature. The proposed 

formula outperforms the compared models in terms of model fit statistics  

As a conclusion, the results show significant successful estimation of Polynomial Best subset 

regression (PBSR) for total sediment load. It has high prediction accuracy. Therefore, the 

proposed formula, PBSR model, can be used in sedimentation engineering applications. 
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