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Tuned Mass Damper: An Intelligent Device As A Protection System 

Instructural Engineering  
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Abstract. Nowadays, destructive environmental forces such as earthquakes, tsunamis and 

winds accompanied with landslides, have mobilized the minds of the civil engineering 

communities around the world for finding new and better means for the protection of 

structures. As it is well known already, the conventional design approach, requires, that 

the structures passively resist environmental disturbances through a combination of 

strength, deformability and energy dis sipation. Our experience shows that this is neither 

sufficient nor satisfactory. The basic role of passive energy dissipation devices when 

incorporated into a structure is to absorb or consume a portion of the input energy, thereby 

reducing energy dissipation demand on the primary structural members and minimizing 

possible structural damage. This paper represents an effort to strengthen the structural 

engineer’s interest on the problem of our modern times: passive energy dissipation. In 

this paper we have approached one of them: Tuned Mass Damper (TMD).  

Keywords: Absorption, Passive energy dissipation, Tuned Mass Damper,  Optimal 

damping, Control 

1   Introduction 

During the design of civil engineering structures, the actions taken into account are usually those, which 

are acting as a consequence of gravity. They represent actions that a structure must endure during his 

exploitation /Design Working Life, acc. to ENV 1991-1/. Here are accounted for, not only permanent 

actions such as the self weight of the structure itself, but also those actions that takes place as a result 

of structure’s exploitation. The idealization resulting by adopting of static model of actions, having into 

consideration their nature, seems to be acceptable /slow variation of actions/. Nowadays, material 

resources are frequently limited. For this reason, during the process of structural design, raises the need 

for structural optimization. Having said that, static model is no more valid. Altogether and added the 

stochastic nature of ambient phenomena such as strong winds accompanied by earthquakes and 

landslides, arises the need for development of new ideas and concepts of structural protection systems. 

Various concepts and innovative technologies are under experimental and practical implementation. 

This paper represents a temptation to raise the attention of our community relatively to the problem and 

the role of passive energy dissipation devices in first, absorbing and after dissipating the input energy 

of an earthquake or environmental hazard. One of the most evident advantages of seismic isolation is 

that offers to the structure the possibility to be flexible, meanwhile to behave as essentially rigid. Every 

external perturbation can be imagined as an energetic “injection” into the civil engineering structure, 

whereas the design consists on the “management” of this input energy inside the structure. The primary 

role of passive energy dissipation devices, when incorporated in a structure, consists in absorbing the 

input energy, respectively in reducing the absorption demand of the primary structural elements, 

resulting in an increase in its /structure’s/ survivability. 

These last years, a feasible technology is used in many parts of the world (Japan, USA), whereas 

constant efforts are under way for improvement and further development of the concept. A number of 

those structural protective systems [11] has already passed the test (e.g., Taipei 101) successfully. 

Having into consideration the applied approaches for this energy input management , the passive energy 

dissipation devices are classified as it follows [6]: 

 Metallic Dampers 

 Friction Dampers 
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 Viscoelastic Dampers 

 Viscous Dampers 

 Tuned Mass Damper/s 

 Tuned Liquid Dampers 

 Liquid Wall Dampers etc… 

Let us consider the lateral motion of a single-degree-of-freedom (SDOF) mathematical model, shown 

in Figure 1, consisting of a mass 𝑚, supported by a shear frame with total linear elastic stiffness 𝑘, a 

damper with linear viscosity 𝑐  and the generic passive damper element (device) Γ. 
    

 

Fig. 1. Simplified SDOF shear frame structure under the influence of a harmonic action 𝑝(𝑡) 

The dynamic response of the structure will be influenced, of course, from this supplementary devices 

(non-viscous in their nature) which will “support” the primary structure with a supplementary strength 

(”muscle”), i.e. it will improve the resistance capacity of the structure. Symbol   represents a generic 

integro-differential operator [Soong] such that its corresponding force is 
 
. In this way, the differential 

equation governing the response of the system given in  𝐹𝑖𝑔. 1 The plot giving the relation force-

displacement, for the damper /device/ with mass  𝑚 𝑑  and generic damping ratio   [6] is shown in 𝐹𝑖𝑔. 2, 

where it can be seen that the damper (device) is modeled in form of an  elastic-perfectly plastic 
(elastoplastic) element, having as initial s tiffness 

 
 and yield strength 

 
. 

 

Fig. 2. Simplified elastic-perfectly plastic (elastoplastic) force-deformation relation 

1.1. Tuned Mass Damper 

A very elegant way to protect structures, especially when wind induced forces are into question is, the 

tuned mass damper (TMD). TMD consists of mass 
 
 with properly tuned spring 

 
 and damper 

 
 attached 

to the primary (main) structure, providing with a frequency-dependent hysteresis loop that increases 

considerably the damping of the primary structural system. The main objective, is, that the natural 

frequency of the TMD has to be tuned with a chosen natural frequency of the primary structure (mainly 
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the fundamental one for MDOF, the first for SDOF). When this primary structure’s frequency is exited, 

the TMD will resonate out of phase with the structural motion, permitting thus energy dissipation by 

the TMD inertia force acting on the structure. The basic principle of TMD has been laid by Frahm 1909, 

in reducing the rolling motion of ships as well as ship hull vibrations, whereas theoretical basis has been 

given by the Dutch engineer J. Den Hartog in his notorious book Mechanical Vibrations in1940. 

Since then, the principle has been used in mechanical engineering and only in the late eighties found 

some application in structural and civil engineering. In order to expose the problem in a simple and 

clear manner, let us consider the mathematical model given as indicated in fig.3, below. The primary 

structure is excited by the harmonic force 
 
, whereas the ground moves according to the periodic law 

 
. 

 

Fig. 3. Simplified mathematical model of a two degrees -of-freedom structure under the influence of a 

harmonic action 𝑝(𝑡) 

 

Sometimes, in order to better estimate the beneficiary contribution of TMD in the absorption and 

subsequently the dissipation of the input energy, the primary damping 𝑐  is taken from the structure 

( 𝐹𝑖𝑔. 3). 

2

k

2

k

t

t
u

)(


)(tgu
)(tu

m

dm

)()()( tdttg uuu 

dk

dc )(tp

 

Fig. 4. Simplified mathematical model of a two degrees -of-freedom structure for the undamped primary 

structure 𝑐 = 0, under the influence of a harmonic action 𝑝(𝑡) 

The equations of equilibrium after the application of the d’Alembert’s principle (fig.4c) are: 

)()()()()()( tgttddtddtt umpucukkuum    .   (2) 

)()()()()( tgdtddtddtddtdd umumukucum    .   (3) 
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The differential equation (2) governs the motions of the primary structure’s mass, whilst equation (3) 

governs the motions of the TMD. After addition of the equation (2) and equation (3), we obtain  the 
differential equation, governing the motions of the combined structure (3.1) as follows: 

 )()()()()( )()( ttdtgdttd pumummkuumm    . (3.1) 

where 

 m  primary structure’s mass 

dm  tuned mass damper’s mass 

k  primary structure’s stiffness 

dk  tuned mass damper’s stiffness 

 

Fig. 4a. Simplified mathematical model of a two degrees -of-freedom structure under the influence of a 

harmonic action 𝑝(𝑡), mass-spring-damper model 
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 Fig. 4b. D'Alembert principle applied to the equilibrium of the two degrees -of-freedom mass-spring-

damper model 

The equations of equilibrium after the application of the d’Alembert’s principle (Fig.4b) once again are: 

 )()()()()()( tgttddtddtt umpucukkuum    .  (2) 

 )()()()()( tgdtddtddtddtdd umumukucum    .  (3) 
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The differential equation (2) governs the motions of the primary structure’s mass, whereas equation (3) 

governs the motions of the TMD. After addition of the equation (2) with equation (3) we obtain the 
differential equation, governing the motions of the combined structure (3.1) as follows: 

 )()()()()( )()( ttdtgdttd pumummkuumm    . (3.1) 

where 

m  primary structure’s mass 

dm  tuned mass damper’s mass 

k  primary structure’s stiffness 

dk  tuned mass damper’s stiffness  

)(tu  relative acceleration of the primary structure’s mass  

)(tgu  ground acceleration 

dc  tuned mass damper’s damping coefficient 

)(tdu  velocity imposed to the tuned mass damper 

)(tdu  displacement of the TMD’s mass at a given time instant t  

)(tp  external excitation (e.g. wind) 

To solve differential equations (2) and (3), let analyze the case when the ground moves according to the 
law (4) whereas the external force varies according to the equation (5) 

ti

gtg euu  0)(
  .       (4) 

ti

t epp  0)(  .       (5) 

Dynamic response is supposed as given per equations (6) and (7) 

ti

t euu  0)(  .       (6) 

ti

dtd euu 
0)(

 .       (7) 

After introducing the expressions (4), (5), (6) and (7) into the expressions (2) and (3) we obtain: 

00

2

0

2 )( gdddddd umumukicm   .   (8) 

000

2

0 )()( pumukmukic gddd    .  (9) 

From the expressions (8) and (9) after transformation of complex solutions into polar ones the solutions 

for 
 
 and 

 
, became: 



231 
 

21

20100 )/()/(  i

g

i eAkumeAkpu   .    (10) 

33

4030 )/()/(  i

g

i

d eAkumeAkpu     .    (11) 

Factors 
 
 (i=1, 4), in the expressions (10) and (11), define the amplification of pseudo-static responses, 

whilst the factors 
 
 represent phase angles of external forces (ground motion or wind action) as well as 

dynamic responses of the structure. These amplification factors are given as it follows: 

2
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22222222

2 )))1(1(2()))(1((   fffD d
.   

      (16) 

 

311    .       (16.1) 

322    .       (16.2) 
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f
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where: 
m

md  . mass ratio 

m

k
2  . 

mc 2  .        (16.6) 
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d

d
d

m

k


2
  

dddd mc 2  



df   





  

d   circular frequency of the TMD 

   circular frequency of the primary structure 

   circular frequency of exciting force or ground motion 

Ratio between the mass of TMD and the mass of primary structure, for the majority of practical cases 

in structural engineering is 05,0 . From this it results that amplification factors for both external 

forces 1A  and ground motions 2A  are approximately equal ( 21 AA  .) This holds also for phase 

angles ( 21   ). 

The main reason for incorporating the TMD is to bring the amplitude 1A  at its lowest possible value 

whereas holding the ratio   as much as possible near 1 (the case of classic resonance). The 

minimum of this value can be achieved by optimizing the f  ratio in such a way that it takes the 

value below: 




1

1
optf  .       (17) 

For optff  , the amplitude of forced vibration 0u  is: 



2
10

0 
k

p
u  .      (18) 
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Fig. 5 Plot showing the displacement amplitudes of the primary structure for the case of mass ratio 

𝜇 = 0.01 and the frequency ratio 𝑓 = 1. One can clearly see the position of fixed points 𝑃 and 𝑄 are 

independent of damping ratio  𝜉 𝑑  

Fig 5 [Den Hartog] shows the variation of the amplification factor 
 
 relatively to specific values of ratios 

 
 

and 
 
 and different values of the damping ratio 

 
. In the case when 

 
, on both sides of ratio 

 
, appears two 

peaks (infinite values) of coefficient 
 
. As 

 
 becomes larger, these two peaks are approaching each other, 

and finally take the same values. This kind of behaviour let us understand that there must exist a certain 

value of 
 
, for which the configuration of the TMD allows the absorption and afterward the optimal 

dissipation of the input energy. 

One another characteristic that can be observed from the 𝐹𝑖𝑔. 5 is that all curves passe through two 

points marked as P and Q (no matter what values the damping ratio 
 
 takes). From this results the 

important fact that the position of these two points depends on coefficients 
 
 and 

 
 only. 

As a result, the expression (13) can be transformed in the following form: 
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where: 

))1( 22

1   fa  .     (19.1) 

)1(22   fa  .      (19.2) 

2222

3 ))(1( ffa    .    (19.3) 

))1(1(2 2

4   fa  .     (19.4) 

In this way, for an amplification factor which doesn’t depend on 
 
, the following condition has to be 

fulfilled [Den Hartog]: 
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  .       (20) 

The corresponding values of 
 
, for points P and Q are: 

4

2

,2
a

a
A

QP



 .       (20.1) 

After introducing the corresponding values for ia  (from 19.1 until 19.4) in the expression (20), one 

can obtain the quadratic equation for 
2  as it follows: 

0]
1

5.01
)1[( 2224 




 ff 




  .   (21) 

Expression (20.1) can be developed further: 

)1(1

1
2

2,1

,2









 QP
A  .     (22) 

For an optimal behavior of the primary structure, it is needed that the amplification factor 2A  

gain minimum values in the neighborhood of 1 . In order to obtain equal values of 2A  in the 

points P and Q one needs to fulfill the following condition: 

)1(1)1(1
2

2

2

1    .    (22.1) 

By replacing the corresponding values for 1  and 2 , obtained from the equation (21) we obtain the 

optimal value of the coefficient optf  [Hartog] 














1

5.01,optd

optf  .     (23) 

The corresponding values are: 











1

5.01
,2,1 opt   .     (23.1) 





5.0

1
,2


optA  .      (23.2) 

All this can be seen clearly in the Figure 6 below 
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Fig. 6. Plot showing the displacement amplitudes of the primary structure for the case of the optimal 
damping ratio 𝜉𝑑,   𝑜𝑝𝑡  

 

Finally, the optimal value of the damping coefficient for the TMD is given by the expression (24) 
[Soong]: 

)5.01)(1(8

)5.05.03(
,









optd  .     (24) 

 

 

1.1.1.   Example 

In order to better appreciate the beneficiary contribution of a TMD when mounted on the top of a 
structure, we will show it through two simple examples, as shown below. 

 A shear frame such as the one shown in the Figure 4 above with a mass lumped at the story 

level 𝑚 = 300 𝑘𝑔  and a story stiffness 𝑘 = 2 ∙  10 6 𝑁/𝑚′ is subject to the action of a harmonic 

force 𝑝 𝑡 =  𝑝 0 ∙ 𝑠𝑖𝑛Ω𝑡 , with an amplitude  𝑝 0 = 3000  𝑁 and with a circular frequency of Ω =
110 rad/sec. The task is: 

First Case - TMD "control" (undamped shear frame, undamped TMD): Design a TMD in such a 

way that the story displacement of the primary structure vanishes completely (this is only 

theoretically possible) whilst the steady-state displacement amplitude of the TMD is less than 

0.02 𝑚. 

The steady-state amplitude of the tuned mass damper needs satisfy the following condition  

  𝑢 𝑑  =   𝑝 0   𝑘 𝑑  < 0.02 𝑚 or,  𝑘 𝑑 >   𝑝 0  0.02 =  3000 0.02 = 150000 𝑁/𝑚  

This implies that the mass ratio 𝜇 =   𝑚 𝑑  𝑚 , and   𝑚 𝑑   𝑚 =  1  𝑓 2  ∙   𝑘 𝑑  𝑘 , from where results 

𝑓 =   𝜔 𝑑  𝜔 =  Ω 𝜔 =  110    𝑘 𝑚   =  110    2000000 300   = 1.347, therefore 

A2 
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  𝑚 𝑑  𝑚 =  1  𝑓 2  ∙   𝑘 𝑑  𝑘 =  1  1.347 2  ∙  150000 2000000  = 0.0413 , Chosen 𝜇 =
  𝑚 𝑑  𝑚 = 0.06 

Using a short script within Matlab, will yield the steady-state amplitudes of the primary shear frame 
structure (Figure 7a) and the TMD (Figure 7b) 

 

Fig. 7a. Plot showing the steady-state displacement amplitude of the primary structure - the lumped 
mass of the shear frame  

 

Fig. 7b. Plot showing the steady-state displacement amplitudes of the TMD structure 

 

Second Case - primary structure "control" (undamped shear frame, damped TMD - optimal TMD 

Design): Design a TMD in such a way that the story displacement of the primary structure remains less 

than 0.009 𝑚′. 
Once again, with the help of a Matlab optimization function (absorbmsratio) it is found that the ratio 

𝜇 =   𝑚 𝑑  𝑚  should be greater than 0.057 ( 𝑚 𝑑 ~5.7% ∙ 𝑚) in order to meet the displacement 

amplitude constraint of the primary structure - see Figure 8a below 
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Fig. 8a. Plot showing the steady-state displacement amplitude of the primary structure vs. mass ratio 𝜇, 

for 𝜇 = 0.057 on meet the design criteria  𝑢 0 < 9 𝑚𝑚 

 

Let 𝜇 = 0.06, then the Matlab script [Bingen Yang] absorbopt yields the optimal TMD parameters as 

follows: 

- the optimal frequency ratio (equation 23)  𝑓 𝑜𝑝𝑡  = 0.934 

- optimal damping ratio   𝜉 𝑑,   𝑜𝑝𝑡 = 0.14598 

- approximate damping ratio (equation 24)  𝜉 𝑑,   𝑎𝑝𝑝𝑟  = 0.14569 

- TMD mass 18 𝑘𝑔 = 0.06 ∗ 300 

- TMD damping coefficient  𝑐 𝑑 = 404.804 𝑁𝑠/𝑚 

- TMD stiffness  𝑘 𝑑 = 106799.57 𝑁/𝑚  

- TMD natural circular frequency  𝜔 𝑑 = 77.028 𝑟𝑎𝑑 /𝑠  

- Maximum normalized displacement amplitude of the primary structure   𝑈    𝑝 0  𝑘  = 5.8649 at 

𝜌 = 0.88784 

- Fixed points 𝑃 and 𝑄 at  𝜌 1 = 0.88453 and  𝜌 2 = 1.05609 

- Normalized displ. amplitude of the primary structure   𝑈    𝑝 0  𝑘  = 5.8595 in 𝑃 

The two figures, Figure 9a and Figure 9b below, show the normalized displacement amplitudes at the 

optimal damping ratio  𝜉 𝑑,   𝑜𝑝𝑡 = 0.14598  and two other comparing damping ratios. 

The maximum displacement amplitude of the primary structure under the so designed and built TMD 

is  𝑈 𝑚𝑎𝑥 = 5.8595 ∙  300  2 ∙  10 6  = 0.00087 𝑚 < 0.009 𝑚  

Requirement (design criteria) fulfilled - the shear-frame possess the required stiffness  
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b) 

Fig. 9a, b. Plot showing the steady-state displacement amplitudes of the optimally tuned TMD and the 

primary structure vs. frequency ratio 𝜌 

 

2   Conclusions  

 The TMD can be tuned to a single structural frequency 

 The TMD is independent from an external power supply 

 Use of inertia force to counteract primary structural motions  

 A simple, yet a very elegant way of reducing the structural motions  

 The TMD is much more effective for wind induced vibrations than earthquake ones  

 The TMD can become out-of-tune or off-tune due to changes in the primary structure’ natural 

frequency, resulting from addition or removal of masses  

 Can be used in combination with other structural protective systems  
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