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ANN in Financial Prediction 
 

Roneda Mucaj, Alketa Hyso 
Department of Computer Science, University of Vlora “Ismail Qemali” 

Vlore, Albania 

Abstract. This paper focuses on the treatment of intelligent systems and their application 
in the financial area. Types of intelligent systems are numerous, but we will focus on 
those systems, which based on their ability to learn, are able to predict. The concept of 
inductive reasoning, how these systems learn and reason inductively, the role and their 
integration in financial services are some of the concepts that will be addressed. The 
second and the main part focuses on the application developed in the design of an artificial 
neural network for financial forecasts. Recognizing the need for better predictive models, 
not just traditional statistical model, we considered with interest the development of an 
application that will predict currency exchange rates, USD-ALL, given the time series of 
real data in years 1995-2012. We test some of the learning algorithms in our system and 
conclude that one of them is most suitable for this problem. This intelligent system 
reached to create a relational model of data, on the basis of which is able to output 
satisfactory results  forecast. After the presentation of experimental results , the paper 
closes with a discussion on possible improvements  that could be made in the future. 

 
Keywords: prediction, time  series,  currency  exchange  monetary,  neural network 

1   Introduction 

It is said that a computer program learns from experiences E with respect to a particular task T and 
performance measure P, if its performance at this task T, improves with experience E. This is the 
definition, given for machine learning and the answer to the question how to create intelligent systems 
that improve their performance in certain tasks through experience.  
One popular technique of implementing the machine learning in prediction is Artificial Neural Networks 
(ANN). ANN is actually an information processing system that consists of a graph representing the 
processing system as well as various algorithms. ANN is a complex and sophisticated computer 
program. It is able to adapt, to recognize patterns, to generalize, and to cluster or to organize data. 

2   Knowing the Problem  

Our project consists in the currency exchange rate forecasts . Monetary exchange market is the largest 
financial and liquid market. It is influenced by a variety of factors including economic, political events, 
and even psychological state of traders and investors. These factors are linked and interact with each 
other in a very complex way. All these interactions are highly volatile and dynamic. This complexity 
makes prediction harder in international markets.  
The ability to predict accurately the rate exchange changes, affects in increasing profits. Trading on 
time with relatively precise strategies may create huge profit, but a trade based on wrong moves could 
risk big losses. Using the right analytical tool and appropriate methods, the effect of errors can be 
reduced and the profitability can be increased. 
Pattern recognition performs on monthly data of monetary exchange rates to forecast future exchange 
rate. This value is forecasting using time series analysis. A suitable type of error analysis is used to 
determine which function is more efficient. 
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Fig.1 Time series data of exchange rate USD-ALL the years 1995-2012 

2.1 Description of the data 

We use monthly series of monetary exchange rates. The training and test data are real monthly rates 
from 1995 to 2012. There are two vectors of data. Time series are sequentially data. The inputs have 
two dimensions, one is year and the other is month. The output data is with one dimension, the exchange 
rate. 

 
2.2 Data Processing 

The rule of data processing is the learning rule.  

 

The larger the input vector, the larger is its effect on the vector of weights. Its solution is to normalize 
the data, thus reducing them. This normalization sets the data in the range 0-1. This improves the 
performance of the network.  

 
2.3 Partition of the data 

In our application, about 65-75% of the data will be used for training and the rest will be used for testing 
and evaluation. Evaluation set is used to determine the performance of the neural network when data 
are not trained before. Its primary aim is to avoid overlapping of data during the training phase. Test set 
used to check the overall performance of the network.   

 
2.4 The choice of transformation functions  

Each input vector is weighed with a particular matrix. Bias b is added with the weighted entry and set 
as entry transfer function. The transfer function gives an output value which can have a value between 
minus and plus infinity and then normalize it to a value between 0 and 1 or between -1 and 1 depending 
on the type of function used. Another reason why a function is used is to prevent the influence of n oise 
in the training process of the network. We will use tan-sigmoidal function as a function of the hidden 
layer and linear function as a function of output layer. 
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2.5 Creating neural network 

This section presents the network architecture with multi-layer feed-forward. We will use the network 
with two layers, based on research for this application a large and more complicated network would 
cause overlapping.  
The hidden layer of network has three neurons and output layer has one neuron. The transfer function 
of hidden layer is tansig and output layer function is purelin. The training function is traind.  
 
2.6 Training 

The learning procedure is determined by different training algorithms. Choosing the training algorithm 
is very important to build the best model possible. It affects network performance and its prediction. 
We will train different algorithms, testing each of them to find then the best predict model for our 
problem.We use supervised learning rule in which the weights and bias are modified according the 
error. Feed-forward networks have several algorithms. It is this variation that allows us to build different 
models to fit the problem.The based implementation of backpropagation network consists in updating 
weights and bias in the opposite direction with error. There are two methods to implement the gradient 
descending algorithm: incremental method and grouping way. In the first mode the gradient is calculated 
and bias with weights are updating after each input. In the second method the gradient is calculated and 
weights and bias are updated after all inputs are applied to the network. 

3   The Experiment Results  

3.1 Comparing the performance of different algorithms used for training the network. 

There are some parameters, different values of which affect positively or negatively in network 
performance. We are focused on two key parameters: accuracy and training speed. Backpropagation 
algorithm has several different types of training. We will test some of them to monitor each 
performance, during training, to choose then the most appropriate algorithm for our application. 

 Levenberg-Marquardt algorithm 
 Descent gradient in series algorithm 
 Variable learning rate algorithm  

 
3.2 Descent gradient in series algorithm  

Gradients are evaluated at each trained entrance and are summarized to determine changes in weights 
and bias. These two change the opposite direction with the gradient. 
 

 
Fig.3.2.1 Performance curve algorithm training with discount gradients in series 
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Fig.3.2.2 Curve of gradient changes 

We see that the MSE is approximately 0.1 for the parameters that we set. 

 
3.3 Variable learning rate algorithm 

This algorithm uses the guidelines techniques and is developed from a performance analysis  of the 
descending standard algorithm. The difference is  that the learning coefficient is not constant during 
training. For this reason it is not possible that the learning rate achieve optimum value before completion 
of training. This also affects performance.The algorithm tries to improve performance by increasing 
learning rate step by step. This value is responsible for the local error. If the new error exceeds the old 
error more than a predetermined value-max-perf-inc, new weights are decreased. Also the learning rate 
is decreased. If a new error is smaller than the old error, then this rate is increased. 

 
Fig.3.3.1 Training performance curve by backpropagation algorithm with variable learning rate 

 
Fig.3.3.2 Changed gradient curves  
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We see from the figure that its convergence is faster than the previous algorithm, but quadratic error is 
not stable. This is because the training process has not big increase of error.  The function of this 
algorithm combines a rate adaptive training with momentum coefficient. 

3.4 Levenberg-Marquardt algorithm 

Levenberg-Marquardt is an algorithm very usable for nonlinear problems. It follows an iterative 
procedure to locate the minimum of a function which is expressed as a sum of squares of nonlinear 
functions. When the current solution is far from the real solution, the algorithm behaves like a gradient 
descent, but it is certain that it will converge. When the current solution is close to the exact solution it 
behaves as GNA algorithm. 

 
Fig.3.4.1 Training performance curve by Levenberg-Marquardt algorithm 

 
Fig.3.4.2 Variability of gradient 

We see that the selected algorithm Levenberg-Marquardt has better performance and 
converges faster than other algorithms. 

3.5 Comparison of algorithms 

Training results showed that gradient descent algorithms, generally, are very slow, because they require 
small training rates to have stable training. Conjugate gradient algorithms converge quickly, but their 
performance is not very well. Levenberg-Marquardt algorithm was the algorithm that results faster and 
more accurate. This algorithm appears to be best suited for problems that need very accurate models. 
We need this in our problem, an algorithm that creates more accurate model under which we may 
perform forecasting and for more in a shorter time. Based on this empirical analysis, we decided to train 
our application with Levenberg-Marquardt algorithm.We give some features and differences of tested 
algorithms. Levenberg-Marquardt algorithm will converge faster in those networks which have less than 
a hundred weights. However, with the increasing number of weights efficiency of this algorithm can be 
reduced.Backpropagation algorithm with variable learning coefficient generally is slower than other 
algorithms as we saw during testing. 

3.6 Simulation 

In this section you will see all the steps in which the solution passes.  

We use real data: monetary exchange rate from USD to ALL from 1995 to 2012. The main steps: 
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1. Creation of data input and target variable.  
2. Normalization of data.  
3. Creation and training  

 

 
Fig.3.6.2 Linear Regression curve between the network outputs and target outputs. 

4. We have to convert output values in real values. So, we use a built -in function. 

 
Fig.3.6.3 Comparison between the output of the network with real value and target series. 

5. After training the network, the required pattern is detected. Now is test phase 
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Fig.3.6.4 Forecasting Simulation 

As seen from the figure, the testing process gives satisfactory results. Curve network outputs, during 
the test phase, matches satisfactorily with the curve of the target outputs. So, the network has managed 
to create a forecast model successfully. 

 

4  Conclusions 

The application, that we discussed, presents the implementation of an intelligent system in prediction 
of monetary exchange of USD in ALL. We chose artificial neural network, as an intelligent technique, 
and designed it according to the data and requirements of the problem. Since it was a problem where 
the data were entered in the series (time series) we chose the feedforward network and trained it by one 
of back-propagation algorithm. Training is based on supervised learning, in Levenberg-Marquardt 
algorithm. We tested some of back-propagation algorithms and according to their performance, it 
resulted that Levenberg-Marquardt algorithm was most suitable for our problem. As a simulation 
environment was used MATLAB. It provided functions for designing, implementing, visualizing, and 
simulating neural networks. It speeded up training and handle large data sets. From the simulation of 
this system was noted that the forecasting created model resulted successful. We saw that the network 
was able to train very well and did this in a short time. Also during the test phase, which is the main 
phase of the evaluation, the results were very close to reality. However the network still needs further 
improvements. Restrictions that we may encounter in forecast accuracy or space complexity are so me 
of the elements need to be improved. 
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