
University for Business and Technology in Kosovo University for Business and Technology in Kosovo

UBT Knowledge Center UBT Knowledge Center

UBT International Conference 2013 UBT International Conference

Nov 2nd, 10:00 AM - 10:15 AM

An Approach That Integrates Android Application With Google An Approach That Integrates Android Application With Google

Scripts, Solves Different Problems Of Emergency Character Scripts, Solves Different Problems Of Emergency Character

Tamara Luarasi
European University of Tirana

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/conference

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Luarasi, Tamara, "An Approach That Integrates Android Application With Google Scripts, Solves Different
Problems Of Emergency Character" (2013). UBT International Conference. 60.
https://knowledgecenter.ubt-uni.net/conference/2013/all-events/60

This Event is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It
has been accepted for inclusion in UBT International Conference by an authorized administrator of UBT Knowledge
Center. For more information, please contact knowledge.center@ubt-uni.net.

https://knowledgecenter.ubt-uni.net/
https://knowledgecenter.ubt-uni.net/conference
https://knowledgecenter.ubt-uni.net/conference/2013
https://knowledgecenter.ubt-uni.net/conference?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2013%2Fall-events%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2013%2Fall-events%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference/2013/all-events/60?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2013%2Fall-events%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:knowledge.center@ubt-uni.net

65

An Approach That Integrates Android Application With Google
Scripts, Solves Different Problems Of Emergency Character

Tamara Luarasi

Information Technology, Mathematics, Statistics Department
European University of Tirana

Abstract The several Cloud technologies, and their services extends the space of
problems that can be solved by them in different fields. The problems are different, but
often they represent the same scenario from the perspective of their solution by the cloud
technologies and their integrations in different applications. Many situations can be
adapted to this scenario: some users send their data into a central Google spreadsheet and
a manager follows this spreadsheet. There are specific situations where we are not much
interested on the storage of the data, but on the momentarily evidence of them and getting
some emergency conclusions.
An approach is adapted to this scenario. The approach essence is: an Android Application
calls a Google script. The Google script plays the role of a web application, which
provides the communication of the Android application with the Google server making
possible to send some data on a spreadsheet from the Android user interface.
Keywords: Android applications, Google scripts, Cloud technologies, Google
applications

1 Introduction
There are several technologies today that manage different aspects of the web applications and there are
specific conditions and requests that determine which of them we need to use in a specific concrete
problem.
Let assume that we need to create a work environment where many users are writing the same structure
of data into the same Google spreadsheet, and the manager in the same time is following the spreadsheet
results being able to judge about the rhythm of everybody work, without any operation from his own
side. These kinds of problems are not conditioned by a high data security, because they have a character
of a momentarily use in the sense that data are not aimed to be stored in one databas e. A big advantage
is that there is not a cost for this communication, because the Google spreadsheet offers a free data
storage.
There are different situations in the real life that would ask this kind of work environment.
Let mention some of them:
Emergency team sends systematically information of a seek person from far distances and this
information is followed by qualified doctors in a Google hospital spreadsheet.
The teacher organizes the tests in distance and the answers are sent into the Google spreadsheet.
The sales persons are selling the products and some info about their sales activity is sent into a central
Google spreadsheet.
Monitoring the spreadsheet is very efficient in the sense that enriching it preliminarily with some graphs
and macros, we can have an idea about the team work and different aspects of the work subject in every
moment. Another advantage if the fact that this work is offered freely
This idea is achieved integrating an Android Application, and a Google script as a web application.

2 The scenario
There are different scenarios that we can use to be adapted to these situations and to solve them, but we
have used the following one:

 A Google apps script is created in Google script console, which provides the writing of the
information into a Google spreadsheet.

66

 An Android Application is created, which activates the script.

 The integration of the Google+ Sign-in with Android is established to make the application usable
by the other users.

3 Google script
A Google script is a JavaScript in Cloud.[1] If we would like to manage a spreadsheet from a Google
script we use the following format:

function doGet() {
 var start = new Date();
 . . .
 var doc = SpreadsheetApp.openById('the spreadsheet key ');
 var sheet = doc.getSheetByName('firstsheet');

 var end = new Date();
 Logger.log("time took: " + (end.getTime() - start.getTime()));
}

where 'the spreadsheet key ' is the part of a the Google URL spreadsheet between
https://docs.google.com/spreadsheet/ccc?key and the first character &. The be able to deploy a Goggle
script as a web application we have to include the function doGet() or doPost() inside this script. The
process of the deployment into a web application generates a URL address for this application which
can be used in different applications. Of course this URL address would be associated with some
parameters and these parameters in our case are going inside a Google script. The idea is that the set of
the parameters e that comes here are considered as elements of an object e.parameter and we can get a
specific one by different syntaxes like e.parameter.parameter_name, or e.parameter[i], or
e.parameter[‘parameter_name’].

function doGet(e) {

 var p = e.parameter.parameter_name;
 . . .
}

The can make some controls of the parameters before adding them into the spreadsheet. In the code
bellow there are considered two parameters one integer and one a string.

function doGet(e) {

 var value1 = 0;
 if(e.parameter == undefined || e.parameter.param1 == undefined){
 value1 = -1;
 }else{
 value1 = parseInt(e.parameter. param1);
 }
 var value2 = 0;

 if(e.parameter == undefined || e.parameter.param2 == undefined){
 value2 = 1;
 }else{
 value2 = e.parameter.param2;
 }. . .
 sheet.appendRow([value1,value2 ,. . .]);

67

. . . }

What we need in our approach is to execute it from an Android application. In this case the script will
execute under the identity of the active user who is accessing the script.

4 Android Application
The Android application, will activate the Google script, managing in this way a background process,
which is the connection with the Internet and sending data into a Spreadsheet. For that reason we are
using the class AsyncTask. The AsyncTask class encapsulates the creation of a background process
and the synchronization with the main thread, which is user interface. [2]

The following lines create an object of the class AsyncTask and the method execute in the line
task.execute((Object) s); run the method doInBackground() and where s or param[0] is the script URL
associated with the parameters.

AsyncTask task = new AsyncTask() {
@Override
 protected Object doInBackground(Object... params) {
 . . .
 try {
 . . .
 DefaultHttpClient clientscript = new DefaultHttpClient();
 HttpGet httpget = new HttpGet(params[0].toString());
 clientscript.execute(httpget);
 . . .
 } catch (IOException e) {
 e.printStackTrace();
 }
 task.execute((Object) s);

4.1 Android Authentication

The aim of the work presented here after all, is to make the Android application available for the other
users. This would need the integration of the Google+ features in our application. There are these feature
that makes the other users with their Google credentials to be able to use our application . [3][4]

Two sides are involved in this process. One is getting started with the Google+ Platform for Android.

Here are two steps to start with the Google+ Platform: [5]

 Enable the Google+ API: a Google project is created on Google API Console, the service
Google+API in service pane is activated and an OAuth 2.0 client ID is created on API Access
pane. The creation of OAuth 2.0 client ID, some info is required like: a product name,
Installed option as the aplication type and the package name, which is the package name of
the Android application that we develop in Eclipse.

The Android system requires that all installed applications be digitally signed with a certificate whose
private key is held by the application's developer. The Android system uses the certificate as a means
of identifying the author of an application and establishing trust relationships between applications. [6]
For this reason we run the following command in a terminal:

keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore.

To get the SHA-1 fingerprint of the certificate. For the debug.keystore, the password is android.

 Configure the Eclipse project

68

In Eclipse we have to import and provide the reference to Google Play services library project and set
up the Java build path and libraries. The following are needed:

1. Launch Eclipse.

2. Select File > Import > Android > Existing Android Code Into Workspace and click Next.

3. Select Browse.... Enter <android-sdk-folder>/extras/google/google_play_services/libproject .

The other side of the Android authentication is the management by code of the Google+ features .

The life cycle of an activity is managed via the following call-back methods, defined in the Activity
base class:

Fig. 1 The life cycle of an activity

The essence of the Google+ features is the management of a PlusClient object , which is used to
communicate with the Google+ service and becomes functional after an asynchronous connection has
been established with the service.

For this the MainActivity in Android application implements some interfaces like below and some of
the properties are:

public class MainActivity extends Activity implements
 ConnectionCallbacks, OnConnectionFailedListener, OnClickListener,
 OnAccessRevokedListener{
 . . .
 private static final int OUR_REQUEST_CODE = 49404;
 private PlusClient client;

69

 private ConnectionResult connectionresult;
 private boolean flag;
 . . .
}

where the property flag is used to stop multiple dialogues appearing for the user.

The basic life cycle of the PlusClient looks a bit like this: [7]

Fig. 2 The basic life cycle of the PlusClient.

Considering two pictures the code that manages the PlusClient object in MainActivity for some of the
boxes is as below[8]:

onCreate() - the object of PlusClient is created and initialized. The user interface is managed too and
one of buttons is so called the Google+ Sign-In button, that we add in application layout.[5]

<com.google.android.gms.common.SignInButton
 android:id="@+id/sign_in_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

@Override

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 . . .

 client = new PlusClient.Builder(this , this, this).build();
 flag = false;

 findViewById(R.id.sign_in_button).setOnClickListener(this);
 findViewById(R.id.logout).setOnClickListener(this);
 findViewById(R.id.revoke).setOnClickListener(this);

70

}

onStart() runs after onCreate()to establish the user connection

@Override
protected void onStart() {

super.onStart();
 client.connect();
}

If the connection is successful the method onConnected() is activated. In this method beside other
tasks, like sending our data into the spreadsheet we can think to get a token from the server.
A token is a packet of data created by server, and contains information to identify a particular user and
token validity. The token will contain the user’s information , as well as a special token code that user
can pass to the server with every method that supports authentication, instead of passing a username
and password directly.
Token-based authentication is a security technique that authenticate the user who attempts to log in to
a server, a network, or some other secure system, using a security token provided by the server.[9]
An authentication is successful if a user can prove to a server that he or she is a valid user by passing a
security token. The service validates the security token and processes the user request, but this aspect is
not treated in this paper.

@Override
public void onConnected(Bundle bundle) {
 . . .
 flag = false;
 final Context context = this .getApplicationContext();
 . . .
 AsyncTask task = new AsyncTask() {
 @Override
 protected Object doInBackground(Object... params) {
 String scope = "oauth2:" + Scopes.PLUS_LOGIN;
 try {
 String token = GoogleAuthUtil.getToken(context,
 client.getAccountName(), scope);
 . . .
 } catch (UserRecoverableAuthException e) {
 e.printStackTrace();
 } catch (GoogleAuthException e) {
 e.printStackTrace();
 }
 return null;
 }
};
 task.execute();
}

If the connection is unsuccessful the method onConnectionFailed () is activated with a parameter result,
which represents a connection status. In this method it is an opportunity to resolve any connection. We
save this connection status in a member variable and invoke it by calling
ConnectionResult.startResolutionForResult() when the user presses the sign -in button or +1 button.

@Override
public void onConnectionFailed(ConnectionResult result) {

71

 if (result.hasResolution()) {
 connectionresult = result;
 if (flag) {
 startResolution();
 }
 }
}

private void startResolution() {
 try {
 flag = false;
 connectionresult.startResolutionForResult(this , OUR_REQUEST_CODE);
 } catch (SendIntentException e) {
 client.connect();
 }
}

startResolutionForResult() activates onActivityResult()as we see it in fig. 2, which establishes the
connection.

protected void onActivityResult(int requestCode, int
 responseCode,Intent intent) {
 setResult("ActivityResult: " + requestCode);
 if (requestCode == OUR_REQUEST_CODE && responseCode == RESULT_OK) {
 flag = true;
 client.connect();
 } else if (requestCode == OUR_REQUEST_CODE &&
 responseCode != RESULT_OK) {
 setResult("ActivityResult: " + requestCode);
 }
}

The user interface of the Android application is managed by some buttons. Being associated by listeners
the method onClick() is available and we can do different tasks.

@Override
public void onClick(View view) {
 switch (view.getId()) {
 case R.id. sign_in_button:
 if (!client.isConnected()) {
 flag = true;
 if (connectionresult != null) {
 startResolution();
 } else {
 client.connect();
 }
. . . .

72

When client is now disconnected, and access has been revoked (and this can provoked by a button), we
should now delete any data we need to comply with the developer properties. To reset ourselves to the
original state, we should now connect again. This is provided by the method onAccessRevoked()

. . .
client.clearDefaultAccount();
client.revokeAccessAndDisconnect(this);
. . .

@Override
public void onAccessRevoked(ConnectionResult status) {
 client.connect();
 . . .
}

5 Conclusions:
The wide development of the new technology makes us to think how to integrate them in an efficient
way to solve specific problems in different fields.
There are situations where the data storage is not much important as would be an emergent evidence of
the data that comes from users in distance.
An approach is proposed in this paper. The users send the data from their smart -phones into a central
spreadsheet. This data immediately can be elaborated by the spreadsheet tools like charts, or various
macros. Some advantages justify this approach and one of them is the cost. The Google spreadsheet use
is free.
The integration of an Android application and a Google script implements this approach.
The two sides of the process of how to make this application usable by the other users is described, both
from Google side and development side of the application.

References:

1. https://developers.google.com/apps-script/
2. Lars Vogel, 2013 Android Background Processing with Handlers and AsyncTask and Loaders -

Tutorial
3. https://developers.google.com/+/
4. https://developers.google.com/+/mobile/android/sign-in
5. https://developers.google.com/+/mobile/android/getting-started
6. https://developer.android.com/tools/publishing/app-signing.html
7. http://www.riskcompletefailure.com/2013/03/common-problems-with-google-sign-in-on.html
8. https://gist.github.com/ianbarber/5170508
9. Rajkumar Singh, Abhinav Sonker,Authentication 2012, Protocol in Different Scenarios

	An Approach That Integrates Android Application With Google Scripts, Solves Different Problems Of Emergency Character
	Recommended Citation

	icbti2013-cse-mek-proceedings.pdf

