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Benchmarks for Hybrid Modelling

Andreas Körner1 and Felix Breitenecker1

Vienna University of Technology, Institute for Analysis and Scientific Computing,
Wiedner Hauptstrae 8-10, 1040 Vienna, Austria

andreas.koerner@tuwien.ac.at

Abstract. Hybrid Modelling is getting more and more important in
technical and natural sciences. In these fields very complex systems and
processes have to be simulated and therefore proper models must be de-
veloped. For complex systems different model structures for dynamical
systems are available. One of the important model structures regarding
complex dynamical systems are hybrid models. A hybrid model consists
of several dynamical models and a state diagram where each state is
described by a differential algebraic equation (DAE). This paper deals
with benchmarks out of different fields of applications of this modelling
approach. The first benchmark is an electrical circuit with linear de-
vices and a diode as a nonlinear component. This example will show the
influence of a simple model to the state space description or the corre-
sponding differential algebraic description. The different models for the
nonlinear behaviour of the diode influences the states of the state dia-
gram. It is remarkable, that the different models for the diode results in
a different hybrid model. The influence from these models on the diode
can be observed. Another benchmark is the rotating pendulum. It is also
described by a state diagram, in this special academic example a state
diagram with two states. The two examples are representative, one out
of the field of electrical engineering, one typical mechanical scenario. In
the article two aspects will be considered. On the one side the modelling
process of the electrical circuit will be observed in detail, especial the
influence of different diode models on the structure of the states, and the
state transition between the two states of the mechanical pendulum. On
the other side also the need of a mathematical notation and description
of the states and their transition will be discussed. In the end of the
article some comments to the simulation of hybrid systems will be given.

Keywords: hybrid models, finite automaton, hybrid automaton, state–space
models, benchmarks for simulation, modeling and simulation

1 Introduction and Concept

The paper mainly deals with benchmarks for hybrid modelling. This first section
illustrates the organisation of the paper, gives a small introduction and explains
the aims of the article. There are two main subjects who are focused in this
paper:
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1. hybrid modelling approaches
2. benchmarks for simulation software regarding hybrid models

The following section will introduce the surroundings of hybrid modelling.

2 Hybrid Modelling

First of all the necessary definitions as in [1] will be given.

2.1 Continuous–Time State–Space model

Let x ∈ n denote the state variables and w ∈ q the external variables related
by a mixed set of differential and algebraic equations of the form

F (x, ẋ, w) = 0. (1)

Solutions of (1) are all sufficient smooth time functions x and w which are
satisfying (1). In technical context the definition is adapted to an continuous–
time input–state–output system of the form

ẋ = f(x, u),
y = h(x, u).

(2)

Therefor the vector w is splited into a subvector u ∈ m and a subvector y ∈ p,
restricted by the condition m + p = q. u is called the input vector or input
variables and y the output vector or the output variables. In representation (2)
the differential part is related to the state and input variables, the algebraic part
to state, input and output variables (see Fig. 1). In representation (1) are more
additional algebraic constraints on the state space variables x.

Fig. 1. Representation of a continuous–time input–state–output system

2.2 Finite Automata

A finite automaton is described by a triple (L,A,E). L is a finite set called the
state space, A is a finite set called the alphabet whose elements are called symbols.
E is the transition rule represented as a subset of L×A×L and its elements are
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Fig. 2. Example of a finite automaton

called edges, transitions or events. A sequence (l0, a0, l1, a1, . . . , ln−1, an−1, ln)
with (li, ai, li+1) ∈ E, for i = 1, 2, . . . , n− 1, is called a trajectory or path.

Typical some finite automata are represented by a finite graph. A certain
example of a finite automaton is shown in Fig. 2. Therefor the set of states
consists of L = {l0, l1, l2, l3} and the alphabet A = {a0, a1, a2, a3}. A can be
interpreted as label on the edges of the graph and the elements of L are denoting
the nodes.

Also in context of finite automata there can be devepoped an input–output
automaton. Therefor two symbols, namely an input symbol i and an output
symbol o, has to be choosen in the finite automaton. Deterministic input–output
automata can be represented by eqations

l� = ν(l, i),
o = η(l, i).

(3)

The symbol l� in equation (3) denotes the new value of the state after the
event takes place, resulting from the old discrete state value l and the input i.
An alternative formulation in this situation could be given: If tk is the time step
before the event takes place and tk+1 the time step after the event the relations
for the output state can be considered as l = l(tk) and l� = l(tk+1). Thereby
l : �→ L is the time evolution of l.

Often the definition of a finite automaton includes the explicit specification
of a subset I ⊂ L of initial states and a subset F ⊂ L of final states. A path
(l0, a0, l1, a1, . . . , ln−1, an−1, ln) is called a successful path if the condition l0 ∈ I
and ln ∈ F is added.

In contrast to the continuous–time system the solution concept of a finite
automaton with or without initial and final states is completely specified because
the behavior of the finite automaton consists of all paths respectively successful
paths.
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2.3 Hybrid Automata

The combination of the previous given definition of a continuous–time state–
space system and a finite automaton leads to the definition of a hybrid automa-
ton. A hybrid automaton is described by a tuple (L,X,A,W,E, Inv,Act). Each
of the Elements is defined as follows:

– L is a finite set, called the set of discrete states.
– X is the continuous state space of the hybrid automaton in which the contin-

uous state variables x take their values. Typically X fulfills in applications
X ⊂ �n, but also n–dimensional manifolds are imaginable.

– A is a finite set of symbols which labels the nodes.
– W = �

q is the continuous communication space in which the continuous
external variables w take their values.

– E is a finite set of edges, called transitions or events. Every edge is defined
by a tuple (l, a,Guardl,l′ , Jumpl,l′ , l

′), where l, l′ ∈ L, a ∈ A. Guardl,l′ is
a subset of X and Jumpl,l′ is a relation defined by a subset of X × X.
The transition from the discrete state l to l′ is called enabled, when the
continuous state fulfills x ∈ Guardl,l′ . The continuous state x jumps to a
value x′ if (x, x′) ∈ Jumpl,l′ .

– Inv is a mapping from the locations L to the set of subsets of X so that
Inv(l) ⊂ X, ∀l ∈ L. Whenever the system is at location l, the continuous
state xmust satisfy x ∈ Inv(l). Inv(l) for l ∈ L is called the location invariant
of location l.

– Act is a mapping that assigns to each location l ∈ L a set of differential–
algebraic equations Fl, relating the continuous state variables x with their
time–derivatives ẋ and the continuous external variables w by

Fl(x, ẋ, w) = 0. (4)

The solution of these differential–algebraic equations are called the activities
of the location l.

The illustration of a certain example is displayed in Fig. 3. Each node repre-
sents a state and a corresponding DAE system. For the transition (l0, a3, l1) the
sets Guard and Jump is also illustrated.

A continuous trajectory (l, δ, x, w) associated with a location l consists of
a nonnegative time δ, the duration of the continuous trajectory, a piecewise
continuous function w : [0, δ] → W and a continuous and piecewise differentiable
function x : [0, δ] → X which fulfill

1. x(t) ∈ Inv(l) for all t ∈ (0, δ),
2. Fl(x(t), ẋ(t), w(t)) = 0 for all t ∈ (0, δ) except for points of discontinuity of

w.

A trajectory of the hybrid automaton is an (infinite) sequence of continuous
trajectories

(l0, δ0, x0, w0)
a0→ (l1, δ1, x1, w1)

a1→ (l2, δ2, x2, w2)
a2→ . . . (5)

227 
 



Fig. 3. Example of a hybrid automaton

such that at the event times

t0 = δ0, t1 = δ0 + δ1, t2 = δ0 + δ1 + δ2, . . . , (6)

the following inclusions hold for the discrete transitions

xj(tj) ∈ Guardlj ,lj+1
,

(xj(tj), xj+1(tj)) ∈ Jumplj ,lj+1

(7)

for all j = 0, 1, 2, . . ..

3 Benchmarks

This section is about the two academic benchmarks to apply the theory of hybrid
systems introduced in the last section. The idea of ARGESIM benchmarks [2] is
to use the hybrid modelling approach to create models for technical systems or
processes out of natural sciences. For this reason two Benchmarks are introduced:

1. hybrid electrical circuit

2. rotating pendulum

The benchmarks work on several case studies which are defined to find out
the potential and constraints of different simulation software. Also the ability to
work with common mathematical model description is included in the focus.

The following subsections will show the way to model such hybrid system
descriptions.
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Fig. 4. Benchmark hybrid electrical circuit

3.1 Hybrid Electrical Circuit

The observed circuit is an ordinary series resonant circuit combined with a diode.
The circuit is illustrated in Fig. 4.

To find the whole description of the circuit the different sates have to be
defined. Therefor the two states of the diode have to be considered. The used
model of the diode is given by the relation of voltage uD and current iD of the
diode. The link is given by the so called Shockley–equation

iD(uD) =

⎧⎨
⎩
IS

(
e
uD

UT −1

)
for uD > 0,

0 for uD ≤ 0.
(8)

The Parameter IS , UT > 0 are characteristic for the diode and the influence can
be investigated by several parameter studies. For the modelling process we will
not focus on these parameter studies. The two states of the diode lead to observe
two different subsystems which will be combined in the whole hybrid system.

The first subsystem is represented by a series resonant circuit. The equations
for the inductance L and the capacity C

uL(t) = L
d i

dt
and i(t) = C

duC

dt
(9)

according to the Kirchhoff law of voltages

u1(t) + uL(t) + u2(t) + uC(t) = u0(t) (10)

results the two equations

d

dt
uC(t) =

1

C
i(t),

d

dt
i(t) = − 1

L
uC(t)− R1 +R2

L
i(t) +

1

L
u0(t). (11)

A sketch of the circuit for this subsystem and the quantity to be measured is
illustrated in Fig. 5.

The state–space description is known as

ẋ = Ax+Bu, (12)
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Fig. 5. Subsystem 1 of the hybrid electrical circuit

where x ∈ �n, u ∈ �d as well as A ∈ �n×n and B ∈ �n×d. For the considered
series resonant circuit follows from the above

d

dt

(
uC(t)
i(t)

)
=

(
0 1

C

− 1
L −R1+R2

L

)(
uC(t)
i(t)

)
+

(
0
1
L

)
u0(t). (13)

For the second state of the hybrid electrical circuit the ordinary system can
be adapted without doing the modelling process again from the beginning. The
subsystem 2 is not really a subsystem but the first subsystem can be used for
formulating the model equation as follows. The equations for the inductance L
and the capacity C according to the Kirchhoff law of currents and voltages

i(t) + iD(t) = iC(t) and u1(t) + uL(t) + u2(t) + uC(t) = u0(t) (14)

results the equations
d

dt
uC(t) =

1

C
i(t) +

1

C
iD(t) (15)

and
d

dt
i(t) = − 1

L
uC(t)− R1 +R2

L
i(t) +

1

L
u0(t)− R2

L
iD(t). (16)

This equations lead to the description of the hybrid electrical circuit for the state
uD > 0 as

d

dt

(
uC(t)
i(t)

)
=

(
0 1

C

− 1
L −R1+R2

L

)(
uC(t)
i(t)

)
+

(
0
1
L

)
u0(t) +

(
1
C

−R2

L

)
iD(t). (17)

But this (nonlinear) state–space description is not enough because in the ordi-
nary differential equation appears the algebraic variable uD. Therefor an addi-
tional equation is needed. Together with equation(8) and the Kirchhoff law for
voltages in the second loop the algebraic equation for uD can be derived as

u2(t) + uC(t) + uD(t) = 0. (18)

The condition uD > 0 is equivalent to u2 + uC > 0 and the algebraic equation
is given by

R2i(t) + uc(t) +R2IS

(
e
uD

UT −1

)
+ uD = 0. (19)
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This algebraic equation is of the form

g(x, z, p) = 0, (20)

where x ∈ �n is the state vector, z ∈ �r is the vector of the algebraic variables
and p ∈ �q a parameter vector if necessary. For this academic example apply
z = uD and p = (R1, R2, C, L, IS , UT )

T .
The condition uD > 0, or equivalent u2 + uC > 0 defines two states of the

hybrid electrical circuit. The corresponding graph for the hybrid automaton is
shown in Fig. 6.

Fig. 6. Graph of the hybrid automaton of the hybrid electrical circuit

3.2 Rotating Pendulum

The second considered example is the rotating pendulum. On the basis of the
definition given in [3] the benchmark deals with a mass working as a pendulum
on the one hand side and as a mass in the gravity field on the other hand side.
The geometrical relation and the two states are shown in Fig. 7.

Fig. 7. Illustration of the geometry and the possible states of the rotating pendulum
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The equations for the description of the two states of the pendulum is the
outcome of first principal modelling, as introduced in [4], in the two scenarios.
This scenario is quite different to the electrical circuit with diode, because the two
states of the rotating pendulum use different coordinate systems. The movement
on the trajectory of a pendulum with tight rope is described in polar coordinates
by the differential algebraic equations

ϕ̈+ k
m ϕ̇− g

m sinϕ = 0,
F = −mg cosϕ+mlϕ̇2.

(21)

Thereby ϕ is the polar angle and (k,m, g, l)T represents the parameter vector
of this system. The second state of the rotating pendulum is defined for the
case that the rope is no longer tight. Therefor the mass of the pendulum acts
like a punctiform mass in the gravitation field. The common description for this
process is formulated in Cartesian coordinates by the differential equations

mẍ = −kẋ,
mÿ = −mg − kẏ.

(22)

The interesting point of view in this situation is to distinguish the two states.
This cannot be done via one condition as in the case of the electrical circuit,
in the case of the rotating pendulum one condition defines the transition from
the state ”circular movement” to ”free fall” and another condition describes the
transition backwards. For the hybrid model of the rotating pendulum a graph
representing the states and their transitions is shown in Fig. 8. In this graph
also the transformation of coordinates is denotet as well as the state variables
in each nodes to focuses the size of the state space.

Fig. 8. Graph of representing the two states of the rotating pendulum
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4 Summary and Outlook

In section 3 the modelling process of the two academic examples – hybrid elec-
trical circuit and rotating pendulum – were presented. The next step is to create
out of these models several tasks for simulation software. As mentioned in the
introduction the model will be used for benchmarking different simulation soft-
ware to outline their pros and cons. To focus on several minimum abilities of
simulation software some common tasks will be formulated like the calculation
of eigenvalues of some subsystems in different scenarios, or the implementation
of the differential and algebraic equations with different initial values. In the
benchmark of the rotating pendulum special attention has to be given to the
transformation on coordinates. Some simulators are not able to transform coor-
dinates and so the users solve this problem by calculating the representations in
both simulators which is not appropriate.

The benchmarks focus also on some numerical considerations. One example
is the condition of the Jacobian matrix. In this context the addressed Jacobian
matrix is formulated as follows. The description of a certain state is formulated
through the introduced equation (1). This represents a equation for the differen-
tial variables but also the algebraic variables are covered. So the Jacobian matrix
in this context is simplified to a gradient and the singular points are derived by

gradF = 0. (23)

Several tasks will be formulated for the benchmarks, also focusing on the
modelling approach. The resulting benchmark emphasis on the ability of simu-
lating hybrid systems. The final definition of the benchmark will be offer several
assignments and will be published on [2].

Further work will be to adapt these models in this way that the model ap-
proaches offer the possibility for a wider range of simulation software, for example
block or graphic oriented simulation software.
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