ARCHITECTURE ANALYSES OF LE CORBUSIER’S VILLA SAVOYE

Labinot Mehmeti

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/etd
ARCHITECTURE ANALYSES OF LE CORBUSIER’S VILLA SAVOYE
Bachelor Degree

Labinot MEHMETI

February/2014
Prishtine
Faculty of Architecture and Spatial Planning

Bachelor Thesis
Academic Year 2007–2008

Student: Labinot MEHMETI

ARCHITECTURE ANALYSES OF LE CORBUSIER’S VILLA SAVOYE

Supervisor: Dr.Sc.Binak BEQAJ

February/2014

This thesis is submitted in partial fulfillment of the requirements for a Bachelor Degree
ACKNOWLEDGEMENT

My sincerest and deepest thanks are extended to many people who were instrumental in my study. First to Dr.Sc Binak Beqaj, I probably never would have decided to do a thesis had it not been for the research class and for the invaluable advice and support and also I will not forget all international professors for their advice.

Finally, my words of gratitude just don’t seem like enough for all of the love and support from my family who gave very many selfless hours of their lives in helping me through the process. I certainly could not have done it without them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>4</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>5</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>1. BIOGRAPHY OF LE CORBUSIER</td>
<td>7</td>
</tr>
<tr>
<td>1.1 Life</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Contexts of architecture developments during 1920-1930</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Projects and work of Le Corbusier</td>
<td>10</td>
</tr>
<tr>
<td>2. ANALYSES OF LE CORBUSIER’S ARCHITECTURE CONCEPTS</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Purist period and the concept of truth in architecture</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Five points of architecture</td>
<td>11</td>
</tr>
<tr>
<td>2.3 The Modulor</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Standardization</td>
<td>15</td>
</tr>
<tr>
<td>3. CASE STUDY</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Villa Savoye</td>
<td>16</td>
</tr>
<tr>
<td>3.1.1 Project description</td>
<td>16</td>
</tr>
<tr>
<td>3.1.2 Location</td>
<td>17</td>
</tr>
<tr>
<td>3.1.3 Technical description</td>
<td>20</td>
</tr>
<tr>
<td>3.1.3.1 Geometry and Proportions</td>
<td>23</td>
</tr>
<tr>
<td>3.1.3.2 Ramp and Staircase</td>
<td>27</td>
</tr>
<tr>
<td>3.1.4 Drawings</td>
<td>29</td>
</tr>
<tr>
<td>4. CONCLUSION</td>
<td>32</td>
</tr>
<tr>
<td>5. BIBLIOGRAPHY</td>
<td>33</td>
</tr>
</tbody>
</table>
Abstract

Le Corbusier remains a very challenging and elusive subject in architectural scholarship today due to the complexity and depth of his work. Critical analyses on his work generally stress one particular design theme or interpretive concept, such as the classical tradition, universalization, machine aesthetics, synthesis of the arts, or mysticism and ambiguity; they never fully explain the depth of his art. He is one of the most significant contributions to modern architecture in the 20th century, Villa Savoye by Le Corbusier. Completed in 1929, Villa Savoye is a modern take on a French country house that celebrates and reacts to the new machine age. The house single handedly transformed Le Corbusier’s career as well as the principles of the International Style; becoming one of the most important architectural precedents in the history. Villa Savoye’s detachment from its physical context lends its design to be contextually integrated into the mechanistic/industrial context of the early 20th century, conceptually defining the house as a mechanized entity. Le Corbusier is famous for stating, “The house is a machine for living.” This statement is not simply translated into the design of a human scaled assembly line; rather the design begins to take on innovative qualities and advances found in other fields of industry, in the name of efficiency.
INTRODUCTION

I would like to present architecture’s true image. It is determined by spiritual values derived from a particular state of consciousness, and by technical factors that assure the practical strength of an idea. It is further determined by the strength of the work, its effectiveness and permanence. Consciousness equals life-purpose equals man.1

Le Corbusier was both an interesting and important character in the context of European and philosophical history. While many of his colleagues were trying their hand at other ventures, Le Corbusier set out to help the people around him. The interesting thing about the work of Le Corbusier is that he was never really satisfied with small accomplishments. Many of the thinkers during that time would have been completely content with helping out a few people. He, on the other hand, knew that in order to truly cement his legacy and make a change, entire cities had to be created. His works was purely modern, as well. He was one of the first thinkers to understand that cities needed to be built upward instead of outward. His design for new cities included lots of steel, lots of modern architecture, and lots of height. Everything was designed to run towards the sky. An interesting thing to consider about the thinking of Le Corbusier was that he would also consider things that other architects failed to consider during that time. He not only wanted to build cities, but he wanted to build the most efficient cities that one could possibly put together.

In the works of Le Corbusier, the elements of what is known as the International style in architecture are clearly visible. Le Corbusier's work often demonstrates enormous scale, rely on significant use of preformed concrete, and exhibit a purity that are all elements of the International style.

1 My life is more or less exactly that of a Trappist or any other kind of monk of your choosing (except for the vow of chastity). Letter Le Corbusier to Sigismond Marcel, 28 January 1925, Le Corbusier Architect of the Century p. 243.
1. BIOGRAPHY OF LE CORBUSIER

1.1 Life

He was born as Charles-Édouard Jeanneret-Gris in La Chaux-de-Fonds, a small city in Neuchâtel canton in north-western Switzerland, in the Jura mountains, just 5 kilometres across the border from France. He attended a kindergarten that used Fröbelian\(^2\) methods.

In his early years he would frequently escape the somewhat provincial atmosphere of his hometown by traveling around Europe. About 1907, he traveled to Paris, where he found work in the office of Auguste Perret, the French pioneer of reinforced concrete. In 1908, He studied architecture in Vienna with Josef Hoffmann. Between October 1910 and March 1911, he worked near Berlin for the renowned architect Peter Behrens, where he might have met Ludwig Mies van der Rohe and Walter Gropius. He became fluent in German. Both of these experiences proved influential in his later career.

In the first issue of the journal, in 1920, Charles-Edouard Jeanneret adopted Le Corbusier, an altered form of his maternal grandfather's name, "Lecorbésier", as a pseudonym, reflecting his belief that anyone could reinvent themselves. Some architectural historians claim that this pseudonym translates as "the raven-like one."\(^3\)

While returning in 1929 from South America to Europe, Le Corbusier met entertainer and actress Josephine Baker on board the ocean liner Lutétia. Le Corbusier made several nude sketches of Baker. Soon after his return to France, Le Corbusier married Yvonne Gallis, a dressmaker and fashion model. She died in 1957. Le Corbusier also had a long extramarital affair with Swedish-American heiress Marguerite Tjader Harris. Le Corbusier took French citizenship in 1930.\(^4\)

Against his doctor's orders, on August 27, 1965, Le Corbusier went for a swim in the Mediterranean Sea at Roquebrune-Cap-Martin, France. His body was found by bathers and he was pronounced dead at 11 a.m. It was assumed that he may have suffered a heart attack. His death rites took place at the courtyard of the Louvre Palace on September 1, 1965, under the direction of writer and thinker André Malraux, who was at the time France's Minister of Culture. He was buried alongside his wife in the grave he had designated at Roquebrune.

\(^2\) Concept of Kindergarten, Friedrich Frobel
\(^4\) Choay, Françoise, Le Corbusier (1960), pp. 10-11
Le Corbusier's death had a strong impact on the cultural and political world. Homages were paid worldwide, and even some of Le Corbusier's worst artistic enemies, such as the painter Salvador Dalí, recognised his importance (Dalí sent a floral tribute). The President of the United States Lyndon B. Johnson said, "His influence was universal and his works are invested with a permanent quality possessed by those of very few artists in our history". The Soviet Union added, "Modern architecture has lost its greatest master". Simultaneously to the ceremony, Japanese TV channels decided to broadcast his Museum in Tokyo in what was at the time unique media homage. His grave site is located in the cemetery above Roquebrune-Cap-Martin, between Menton and Monaco in southern France.
1.2 Contexts of architecture development during 1920-1930

Modern architecture is architecture that emerged in the 1920s in Europe and the United States. It began as a response by architects to rapid technological advances and greater urbanization of society at the turn of the century. Modern architecture is known for its use of new materials and new construction technologies. Modern architecture is architecture of simple forms (rectangles) enclosed with flat opaque (solid) or transparent (glass) walls. The new materials - glass and steel changed the look of buildings, the experience of being inside looking out, and construction time and technique. Steel and glass engineering produced skyscrapers - a new building type that transformed skylines around the world and pushed living in the sky to new heights! Modern architecture is considered progressive (forward looking) rather than regressive (backwards looking or stylistic). The assembly of standard components and new technologies of travel - particularly cars, ships and aircraft - inspired imagery of an optimistic, heroic and progressive era. Modern architecture expresses volume (rather than mass), balance (instead of symmetry) and elimination of ornament (or applied decoration).

5 Changing ideas in Modern Architecture 1750-1950 by Peter Collins
1.3 Projects and work of Le Corbusier

- 1923: Villa La Roche, Paris
- 1925: Villa Jeanneret, Paris
- 1928: Villa Savoye, Poissy-sur-Seine, France
- 1931: Palace of the Soviets, Moscow, USSR (project)
- 1933: Tsentrosoyuz, Moscow, USSR
- 1947–1952: Unité d’Habitation, Marseille, France
- 1950–1954: Chapelle Notre Dame du Haut, Ronchamp, France
- 1951: Maisons Jaoul, Neuilly-sur-Seine, France
- 1952: Unité d’Habitation of Nantes-Rezé, Nantes, France
- 1952–1959: Buildings in Chandigarh, India
 - 1952: Palace of Justice
 - 1952: Museum and Gallery of Art
 - 1953: Governor’s Palace
 - 1955: Palace of Assembly
 - 1959: Government College of Art (GCA) and the Chandigarh College of Architecture (CCA)
- 1957: Maison du Brésil, Cité Universitaire, Paris
- 1964: Unité d’Habitation of Firminy, France
- 1965: Maison de la culture de Firminy-Vert
- 1967: Heidi Weber Museum (Centre Le Corbusier), Zurich, Switzerland

6 Wikipedia source
2. ANALYSES OF LE CORBUSIER'S ARCHITECTURE CONCEPTS

Le Corbusier remains a very challenging and elusive subject in architectural scholarship today due to the complexity and depth of his work. Critical analyses on his work generally stress one particular design theme or interpretive concept, such as the classical tradition, universalization, machine aesthetics, synthesis of the arts, or mysticism and ambiguity; thus, they never fully explain the depth of his art.

2.1 Purist period and the concept of truth in architecture

The “truth,” as a metaphysical concept in relation to art, has existed since ancient times; and it continued to be a major theme in the philosophical discourse right up to the 20th century. Plato was the first to pose the question of truthful representation in art. His well-known argument that art is twice removed from the truth has remained very important and influential throughout the history of art theory.

2.2 Five points of Architectures

Five points of architecture, which Le Corbusier finally formulated⁷:

1. Pilotis are supports such as columns that lift a building above ground or water. Beyond their support function, the pilotis raise the architectural volume, lighten it and free a space for circulation under the construction. They refine a building's connectivity with the land by allowing for parking, garden or driveway below while allowing a sense of floating and lightness in the architecture itself.

Fig 1. "Pilotis" draw (Source: Kenneth Frampton – "New Architecture")

⁷ 1926 a paper Les 5 points d'une architecture nouvelle where he declared the cardinal rules of "new architecture". (explained by Kenneth Frampton, 1980, p. 157)
(2) The free design of façade: By separating the exterior of the building from its structural function the façade becomes free and can be designed freely.

(3) The horizontal window – The façade can be cut along its entire length to allow rooms to be lit equally\(^8\). It is easy for air and light to enter the interior of the building, making the floor feel very open. It also grants a great view of the surrounded yard.

\(^8\) Le Corbusier – “Towards a New Architecture”
(4) The free designing of the ground plan – The absence of supporting walls means that the house is unrestrained in its internal usage. Being supported by pilotis alone, it is possible to have a very open floor plan (walls can be placed with no need to consider support).

![Fig 4. The Free Plan draw (Source: Kenneth Frampton – “New Architecture”)](image)

(5) Roof gardens – A roof garden is any garden on the roof of a building. Besides the decorative benefit, roof plantings may provide food, temperature control, hydrological benefits, architectural enhancement, habitats or corridor for wildlife, and recreational opportunities. The flat roof can be utilized for a domestic purpose while also providing essential protection to the concrete roof.

![Fig 5. Roof Gardens draw (Source: Kenneth Frampton – “New Architecture”)](image)
2.3 The Modulor

The Modulor is an anthropometric scale of proportions devised by Le Corbusier. It was developed as a visual bridge between two incompatible scales, the Imperial system\(^9\) and the Metric system\(^{10}\). It is based on the height of an English man with his arm raised. It was used as a system to set out a number of Le Corbusier's buildings and was later codified into two books. Le Corbusier developed the Modulor in the long tradition of Vitruvius, Leonardo da Vinci's to discover mathematical proportions in the human body and then to use that knowledge to improve both the appearance and function of architecture. The system is based on human measurements, the double unit, the Fibonacci numbers, and the golden ratio. Le Corbusier described it as a "range of harmonious measurements to suit the human scale, universally applicable to architecture and to mechanical things.

In measurement, body proportions are often used to relate two or more measurements based on the body. A cubit, for instance, is supposed to be six palms. While convenient, these ratios may not reflect the physiognomic variation of the individuals using them.

Le Corbusier used his Modulor scale in the design of many buildings, including:
Unité d'Habitation in Marseilles, Church of Sainte Marie de La Tourette, Carpenter Center for the Visual Arts.

\(^9\) System of units first defined in the British Weights and Measures Act of 1824.

\(^{10}\) An internationally agreed decimal system of measurement that was originally based on the mètre des Archives and the kilogramme des Archives introduced by France in 1799.
2.4 Standardization

Le Corbusier’s ideas on standardization and rationalism in the domestics sphere were clearly informed by ideas about the order of nature, His enthusiasm for the homes of ants and honey bees and his continued references to the biology of the city.

Although conceived to save time and money, making standardized buildings was not the simple process that Le Corbusier originally professed it to be. A great many errors were made along the way. These are illustrated in great detail in Benton’s piece „Pessac and Lège revisited: standards, dimensions and failures”. Here Le Corbusier used:

“Standard prefabricated metal windows, standard roller blinds, standard door, standard staircases inside and out, standard fittings (window and door handles, locks, etc.) an innovator chemical septic tank (the ‘Perfection’, manufactured by Stupfel), Odelin-Nettey-Bourdon’s range of Robur combined kitchen stove and hot air heating system and, notionally at least, a standard plan and the use of the famous cement cannon manufactured”

By Ingersoll-Rand

Like most buildings, his were a combination of the standard and the site specific, his ideals deeply compromised by reality and in conflict with his vision of a poetic architecture individually tuned to each client. Undoubtedly Le Corbusier was hampered in his pursuit of unification by a construction industry that was not yet ready for his ideas.

Although – because of his disillusionment with both industry and government – he seemed to lose faith in the application of industrial methods to architecture, he remained very interested in the issue of standardization throughout his career. Indeed, he returned to this issue for his last, most modular scheme of all, the Venice hospital. However, in the intervening years other factors seem to have come to the fore, both pragmatic relating to the availability of materials and skills in the lean war years – and poetic – relating to the body, its size and its experiences.

12 See for example FLC 21941 showing the prefabricated cladding panels posited for the Unité at Meaux in 1957
3. CASE STUDY

3.1 Villa Savoye

3.1.1 Project Description

One of the most famous houses of the modern movement in architecture, the Villa Savoye is a masterpiece of Le Corbusier's purist design. It is perhaps the best example of Le Corbusier's goal to create a house which would be a "machine a habiter," a machine for living (in).

Located in a suburb near Paris in 1929, the house is as beautiful and functional as a machine. Le Corbusier pointed out the primary forms of cubes, cones, spheres, cylinders, or pyramids are more distinct and beautiful. The form of villa Savoye is a cube shape box lifting up by Piloti. For larger one on the back a small shearing makes it become two cubes. The pure geometry of cube dominates Villa Savoye. Without the variety of style decorating surface of architecture, the surface reveals the pure geometric form of building.

Fig 7. Villa Savoye-Main Entrance (Source www.ville-poissy.fr)
3.1.2 Location

Villa Savoye is located in Poissy is just under an hour's drive from Paris, and is typical of the suburbs of the capital, with long streets of single-family garden homes. Villa Savoye occupies one of these sites, standing closer to nature than to the street and releasing a large green space around it (although the construction of facilities for the city after the war has weakened significantly in the area of private housing). The main part of the house (living room, kitchen, bedrooms and bathrooms) is located on the first floor, while the ground floor is occupied by the hall and offices for the service, with a garage capable of storing 3 automobiles of the time, something that was a milestone in the history of architecture and a great step forward for its time. The roof is flat and on it there is a small garden.

Fig 8. Location of Villa Savoye (Source: Google Earth)
Located on a flat open area of grass, and is surrounded by high trees. The 1st floor which houses the main rooms hover over the field and its 360 degree view maintain constant visual connection with its surrounding landscape. The promenade on the roof allows a framed high viewpoint looking over to Paris. The house seems like a pure symmetric object, standing out in the open. it does not blend in to the landscape. But the constant 360 degree view makes the landscape as part of house for the occupants.

Fig 9. Site Plan
In Villa Savoye, Le Corbusier tries his best to bring landscape into the building. Roof garden is the most obvious elements that achieve this goal, besides that, windows and glazings can also reflect the landscape.

For the windows without glazing, clients can see through it and directly view the environment. For windows with glazing, clients can not only see through them, but also, they can reflect environment.
3.1.3 Technical Description

The building highlights Le Corbusier’s five points for a fundamentally new aesthetic: 1) pilotis, 2) roof garden, 3) free plan, 4) vertical windows, and 5) free façade composition. A series of sketches were generated to illustrate the incorporation of these points in the Villa Savoye. A grid of supports and load-bearing ceilings were arranged to make up the skeletal frame of the Villa Savoye. The pilotis are placed on consistent intervals rising directly from the ground and elevating the main floor allowing the house to appear as if it is floating. They also channel the movement of the car below and accentuate the main axis of the home; the entrance. The garden area is moved from the typical site to the rooftop terrace or rooftop garden. Walls were to be inserted, many or few, providing the ability for countless variations within. This resulted in the role of the exterior wall to change. Now referred to as a membrane in this specific case, the exterior walls have been freed of their load-bearing role allowing freedom of composition further emphasizing the functionality of the building itself.

(1) The pilotis (supporting columns):
The Villa Savoye is supported not by traditional walls, but by reinforced concrete columns or pilotis. This allows the rest of the building to be designed far more freely, with no need to support it through other means.

Fig 12. Villa Savoye, pilotis (Source: Le Corbusier Guides)
(2) The roof gardens:
Reinforced concrete is the new way to create a unified roof structure. It is a recreational area, shelter and garden in one. A wall provides privacy and shadow, and its open layout lets in light to the second floor- adding to the open design of the entire building.

![Fig 13. Villa Savoye, Roof garden (Source: Le Corbusier Guides)](image)

(3) Free plan:
Being supported by pilotis alone, it is possible to have a very open floor plan- wall can be placed with no need to consider support. This gives the villa a room layout unlike most buildings-built for appearance and comfort alone.

![Fig 14. Villa Savoye, Free plan Source: Le Corbusier Guides](image)
(4) The horizontal window:
The horizontal windows of the villa make it easy for air and light to enter the interior of the building, making the second floor feel very open. It also grants a great view of surrounding yard, from wherever one stands inside the villa.

![Fig 15. Villa Savoye, Horizontal windows (Source: Le Corbusier Guides)](image)

(5) The free façade:
What applies to the floor plane also applies to the façade itself—with no outer walls for support, the walls that are can be designed freely. Because of this, the façade of the Villa is both characteristic and functional.

![Fig 16. Villa Savoye, The free façade (Source: Le Corbusier Guides)](image)
3.1.3.1 Geometry and Proportions

Villa Savoye is basically formed of geometries and proportions, for geometries, it formed by circles and rectangles, for proportions, it formed by golden rectangles and roots.

Fig 17. Ground Floor (Source: History of Architecture Theory)

Fig 18. First Floor (Source: History of Architecture Theory)

Fig 19. Roof Floor (Source: History of Architecture Theory)
These are the rectangles in the whole building.

![Ground Floor Rectangles](source)

Fig 20. Ground Floor Rectangles (Source: History of Architecture Theory)

![First Floor Rectangles](source)

Fig 21. First Floor Rectangles (Source: History of Architecture Theory)

![Roof Floor Rectangles](source)

Fig 22. Roof Floor Rectangles (Source: History of Architecture Theory)
Villa Savoye is a product after accurate calculations. Le Corbusier used golden rectangle as a calculation method to set the positions of columns, the height of the wall as well as the divisions of spaces. A golden rectangle is a rectangle whose side lengths are in the golden ratio13.

A golden rectangle can be constructed with only straightedge and compass by 4 simple steps:

- Construct a simple square
- Draw a line from the midpoint of one side of the square to an opposite corner
- Use that line as the radius to draw an arc that defines the height of the rectangle
- Complete the golden rectangle

13 Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities
Root 5 rectangle is another way to search the proportion in this building. This kind of rectangle can be found in elevations. It decides the position of the middle column as well as the room divisions. A root rectangle is a rectangle in which the ratio of the longer side to the shorter.

The root-5 rectangle is related to the golden ratio (φ). The longer side is equal to one plus two times $1/\phi$ (0.618...).

3.1.3.2 Ramp and Staircase

Corbusier design uses these concepts to not only pull the viewer through his structure laterally, but vertically as well. He designed the central stairway and ramp to allow unseen light to flood down, so pull the user to the rooftop garden above.

Ramp and staircase which are the main tools in this building and how light will affect them. According to Le Corbusier's concept of "Promenade Architecture", architecture should provide and relax environment for clients. In this building, ramp is a useful tool to achieve that and has a longer distance and clients will spend more time in walking on it and by walking on the ramp, clients can easily walk around the building and enjoy it. By comparison, staircase provides clients a fast way to go through the building in a couple of minutes.

The architectural design doesn't ever stop the viewer; instead it creates a rhythm that not only leads the viewer through the structure, but into the landscape beyond.

Fig 29. Villa Savoye Ramp (Source "The Villa Savoye" by Jacques Sbriglio)
Le Corbusier divides this building into three levels: cave, habitation and solarium. Cave refers to the ground floor. The inner space in ground floor is less than the levels above this ground floor level are the darkest space in this villa. For the middle level, clients share both light and shadows, apart from inner spaces, this level contains an open roof garden and a kitchen terrace which is suitable for humans and can be referred as habitation. Roof is the solarium which is a completely open environment and sunshine just comes down directly and this is brightest level.

Fig 30. Circulation and Light (Origin of Architecture Pleasure by Grant Hildebrand)
3.1.4 Drawings

One of the most distinctive aspects of the ground floor is the porte cochere15 that wraps three sides of the building. Le Corbusier's embrace of the car drove (no pun intended) this plan, so the space between the pilotis (slender columns) and exterior wall is wide enough for a car to pass through. But this floor is mainly taken up by the service areas, including toilet, garage and servants quarters.

15 Roofed structure covering a driveway at the entrance of a building to provide shelter while entering or leaving a vehicle.
The Savoye family’s apartment is on the first floor, set out around the hanging garden. In all the rooms there are concrete window ledges above cupboards with aluminium sliding doors. The living room has a bay window opening into the terrace. At night time it’s lit by a long nickel-planted steel chandelier. The living room is a large space that is generous even by today's standards. It can actually be seen as a progenitor of today's large "living areas."

The kitchen is accessed via pantry with fitted cupboards and a tiled worktop highlights the importance of the room.

Fig 32. First Floor of Villa Savoye 1:100 (Source: The Villa Savoye” by Jacques Sbriglio)
A lot of the design starts to fall into place once we step outside onto the terrace. The house can be seen as a tripartite layering of experience and meaning.

The Solarium is formed by a wind-break wall with curves echoing those on the ground floor. Reinforced concrete is the new way to create a unified roof structure. It is a recreational area, shelter and garden in one. A wall provides privacy and shadow, and its open layout lets in light to the second floor—adding to the open design of the entire building.

Fig. 31 Roof Floor of Villa Savoye S 1:100 (Source: The Villa Savoye® by Jacques Sbriglio)

Fig 33. Roof Floor of Villa Savoye S 1:100 (Source: The Villa Savoye® by Jacques Sbriglio)
4. CONCLUSION

The Villa Savoye is a masterpiece of 20th century design and one of the greatest works by the Swiss architect Le Corbusier. Situated at Poissy, outside of Paris, the Villa Savoye is very distinctive and quite stunning. Built in accordance with Le Corbusier’s stylistic rules, which are still hugely influential today, the house stands elevated in the middle of a field, boasting a roof terrace and horizontal windows. These features and others were to become central to modern architecture and was what Le Corbusier’s referred to as his ‘machine for living’.

The main support in the villa is the use of concrete columns to raise the building of the ground and support the structure.

Le Corbusier believed "the building had to be raised 3-6 meters so that the Villa Savoye could be removed from soil therefore introducing it to light and air." The elevated rectangular structure make the building has a feel of lightness.

The uses of pilotis throughout the building allows the design having no bearing walls, creating an independent structural system that carries floors separate from the wall, meaning the placement of wall is wherever it desire. No bearing wall considerations result in the ability to create open space without concern of changing in building structure. The idea of free plan also carried on in bringing the landscape under the outline of the building.

Columns are the most important structural elements in Villa Savoye. Although the building in part rests on the ground floor base, the first floor extends beyond the base which makes the structure seem to hover in mid-air.

In the end as a conclusion Le Corbusier is a great example for how architecture itself is 'moving landscapes.

The idea that promenade can lead the viewer through the structure, and craft such a specific yearning into the landscape beyond, plants the seed of movement through the landscape into the user's mind. An idea that won't go away until it is sated. The second idea, that landscape is mobile, can be seen in the form of both works' rooftop gardens. This promotes a need to stay, to experience, and to view the area beyond, that previously didn't exist. While Le Corbusier didn't ever physically move landscapes, his use of architecture design certainly changed how his patrons viewed and experienced the landscape of his sites; and through that fact alone, his designs were successful.
5. BIBLIOGRAPHY

1. Le Corbusier - “Toward a New Architecture” (1928)
2. Le Corbusier - “The city of Refuge” (1933)
3. Choay Francoise - “Le Corbusier” (1960)