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Abstract. Agent-Based Models have become a widely used tool in social sciences, health care 
management and other disciplines to describe complex systems from a bottom-up perspective. Some 
reasons for that are the easy understanding of Agent-Based Models, the high flexibility and the 
possibility to describe heterogeneous structures. Nevertheless problems occur when it comes to 
analyzing Agent-Based Models. This paper shows how to describe Agent-Based Models in a 
macroscopic way as Markov Chains, using the random map representation. The focus is on the 
implementation of this method for chosen examples of a Random Walk and Opinion Dynamic 
Models. It is also shown how to use Markov Chain tools to analyze these models. Our case studies 
imply that this method can be a powerful tool when it comes to analyzing Agent-Based Models 
although some further research in practice is still necessary.  
 
Keywords: Agent-Based Model, Markov Chain, Random Map Representation 
 
 
1. Introduction 
 
Agent-based  modeling  has  become  a  widely  used  modeling  technique  and  is nowadays used in 
many fields such as social sciences, computer science, healthcare management and economics [1]. 
One of the many advantages over other modeling techniques is the high flexibility of agent-based 
models. Another big merit is the possibility to describe heterogeneous structures. Especially these two 
features make it possible  for  agent-based  models to  deal with huge data sources and  model very 
complex systems. The  availability  of  more  powerful  computational tools  helps  to  simulate  such 
complex models but there are still limitations when it comes to analyzing agent-based models. Very 
complex agent-based models have a high number of parameters and usually a lot of them are not 
known exactly. To parameterize or calibrate the model, a lot of simulation runs are necessary. This 
leads to a high amount of computational resources and time. Another big issue is the validation of the 
model. That means to find out if the right model was used to satisfy your needs. Hereby a problem 
arises as appropriate methods hardly exist for agent-based models. The aforementioned problems 
underline the need for analysis-methods for agent- based models. Before we briefly explain our 
approach it is necessary to give short introductions to agent-based models and their connection to 
Markov chains. The latter poses the key-tool for our analysis-method. 
 
 
2. Introduction to Agent-Based Modeling and Markov Chains 
 
In this section we will give a short introduction to agent-based models (short ABMs) 
and Markov chains (short MCs). ABMs are models of systems composed of autonomous, interacting 
entities called agents. These agents live together in the same environment and can change their 
attributes after interacting with other agents or the environment. The collection of all attributes that 
describe the agent is called individual state of the agent. In this work we are just  regarding  stochastic  
ABMs. This means that  random effects influence the simulation results. Stochastic models that are 
easier to analyze are MCs. A MC is a stochastic process that  satisfies the Markov property that  is 
also  called  “memorylessness” [2]. This means that the process “forgets” all about the past and the 
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further evolution only depends on the current  state.  We first  define  the state space of our stochastic 
process. That is a finite set of states our process can be in. A time-discrete stochastic process is defined 
as a sequence of random variables with state space. The variable    always stands for the time at which 
we observe our process. We define as the one-step transition probability from state at time step to 
state   in the next time step. The transition probabilities can be collected  in a transition matrix, where 
the entry in row number  i and column number j correspond to. The transition matrix    contains all 
information about the MC and is important to analyze its transient and asymptotic behavior. After  
starting  in  a  certain  state  the  MC  evolves  following  the  transition probabilities. We now want 
to know in which state the process is when we observe it at a certain time. Given an initial distribution 
vector we can calculate the distribution at time with the formula The initial distribution                                     
is given as a row vector with being the probability that the MC starts in state at time. So the calculation 
of the state distribution at time is just n times multiplying with the transition matrix. Under certain 
conditions on the transition matrix a unique limit distribution exists with being   the   asymptotic 
probability  for  the  process  to  be  in  state. Under these  conditions  the  limit distribution can be 
found solving a system of linear equations, see [2]. As intended by the mentioned formulas MCs are 
quite simply to analyze in the contrary to ABMs. Hence a direct comparison between these techniques 
would improve the analysability of the ABMs.  
 
 
3. Agent-Based Models as Markov Chains 
 
This section will show that this comparison is possible as we give a step by step instruction on how 
to create a MC from a given ABM [3], [4]. 
 
3.1 Step1: Identifying the State Space 
 
The first step is to find all possible states of the MC. Therefore we start with a configuration of the 
ABM. That is a possible combination of individual state values for each agent. 

 
Fig.  1.  Two configurations that map on the same Markov state. The first number represents the 
number of black agents, the second number represents the number of white agents. The state 
space of the MC is given as with number of black agents number of all white agents. 
Let be the individual states space of an agent and the total number of agents. We define the 
configuration space as the set of all configurations of the ABM. Our aim is the macroscopic 
analysis of the model. Hence we need to find an aggregation mapping from our configuration space 
to a space. Usually this is done defining that the i-th row of counts all agents with state. The image           
will furthermore pose for the state space of our MC. This idea is illustrated in Fig. 1 for an ABM 
with only two individual states represented by the colours white and black. 
 
3.2 Step 2: Calculate the Transition Matrix 
 
The second step is to find all possible transitions between our Markov states and calculate the 
transition probabilities. Fig. 2 shows the practice of how to find possible transitions. 
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Fig. 2. Schematic description of the approach of calculating the transition matrix. 

 
We first start with a chosen Markov state and we want to know which state can be reached in the 
next time step. Then we select a configuration of the ABM that maps on our chosen Markov state. It 
has to be mentioned that it is generally not trivial what configuration has to be chosen if more than 
one of them maps on the same Markov state but in the investigated examples this is irrelevant. 
With the regarded configuration we simulate one time step of the ABM using the updating rule. The 
updating rule contains all information about the ABM for example the movement of the agents or 
interacting rules. All agents update their attributes according to that rule and we observe a new 
configuration after the time step. 
The last step is to map our new configuration again onto the state space    with and we have found 
one possible state transition. If we repeat this several times for each Markov state we can 
approximately calculate the transition matrix    for our MC. 
Following these two steps a MC can be developed matching the macroscopic dynamics of the ABM. 
Hence the ABM can be investigated analysing the MC. 
 
 
4. Results 
 
We finally want to compare some results of the ABM and the corresponding MC for some test 
cases. Therefore we look at the transient behavior of the model at a specific time. We fix an initial 
distribution and calculate the transient distribution for the MC. For the ABM we realize a Monte-
Carlo-Simulation where the start values for the agents follow the same initial distribution. 
 
4.1 1D Random Walk 
 
We will take a look at the results of a 1D random walk model. In this case we have a 1-dimensional 
lattice with a finite number of sites. Furthermore a number of agents are distributed on them. Hence 
the only attribute of an agent is its site on the lattice. The agent can move left and right following 
some rules. If the agent is alone on a site he has to move on to one of the neighboring sites with the 
same probability. If another agent is on the same site, there is a probability of 0.6 to stay. First we 
need to define the states of the MC and how the map     works. We are considering 5 sites and 2 
agents. The individual state of an agent is just an integer between 1 and 5 that holds his position on 
the numbered lattice. A state of the MC always contains 5 positive integers that sum up to the total 
number of agents, in our case to 2. If we use the symmetry of this model we can reduce the total 
number of Markov states to only 9. In Fig. 3 we can see the so-called transition-diagram of our MC. 
The arrows show all possible one-step transitions with probability greater than 0 between the 
Markov states represented by circles. Without knowing the exact transition probabilities we can start 
analyzing our process. 
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Fig. 3. Transition-diagram of a 1D random walk with 2 agents that can move on 5 sites lattice. The 

circles represent the Markov states and the arrows represent all possible one-step transitions. On 
the right hand side we see the corresponding agent configurations. 

 
We call a closed communicating class. Once the process enters one of those states, it stays in the class 
forever. As is reachable from every other state in a finite number of time steps we neglect all other 
states for the asymptotic behavior. 
 

 
Fig. 4. Comparison of the ABM (bright) with the time-discrete MC (dark). The process always 
starts in state 5. On the left we see the transient distribution after 10 time steps, on the right 

after 20 time steps. For the Monte-Carlo-Simulation of the ABM we used 100.000 iterations. 
The results in Fig. 4 show that the limit distribution is nearly reached after just 20 time steps. In this 
case we could calculate the transition probabilities by hand using the movement rules of the random 
walk. In our simulation the stochastic process always started in state 5 corresponding to the 
configuration. The exact limit distribution can be calculated solving a system of linear equations. It 
is independent of the initial distribution with, and. We can also calculate the expected value of the 
time we first enter the closed communicating class. When we start in state 5 this absorbing time is 
reached after 7.08 time steps. 
 
4.2 Opinion Dynamics Model 
 
Another type of model we were investigating is a two-state opinion dynamics models in which the 
agents are able to change their states after interacting with other agents. We were looking at 
different interaction network types and compared the results with regard to the Euclidean norm of 
the error vector. Analyzing a simulation run of the ABM  with  20  agents  we  received  a  total  
difference  to  the  Markov  chain  of. 
 
 
Conclusion and Outlook 
 
Our case studies show that this approach works well for the investigated examples. Using statistic 
tests we can show that the results of the ABM and the MC follow the same distribution. The 
movement and interacting models we considered can be used in more applied models as sub models. 
Some further research on bigger and more applied models is still needed. Acknowledgments. K-
Projekt DEXHELPP is supported by BMVIT, BMWFW and the state of Vienna via COMET – 
Competence Centers for Excellent Technologies. Programme COMET is processed by FFG. 
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