
University for Business and Technology in Kosovo University for Business and Technology in Kosovo

UBT Knowledge Center UBT Knowledge Center

UBT International Conference 2021 UBT International Conference

Oct 30th, 9:00 AM - 10:30 AM

Workplace Chat Application Using Socket Programming in Python Workplace Chat Application Using Socket Programming in Python

Egzon Salihu
University for Business and Technology - UBT, es44550@ubt-uni.net

Gentiana Blakaj
University for Business and Technology - UBT, gb46704@ubt-uni.net

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/conference

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Salihu, Egzon and Blakaj, Gentiana, "Workplace Chat Application Using Socket Programming in Python"
(2021). UBT International Conference. 388.
https://knowledgecenter.ubt-uni.net/conference/2021UBTIC/all-events/388

This Event is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It
has been accepted for inclusion in UBT International Conference by an authorized administrator of UBT Knowledge
Center. For more information, please contact knowledge.center@ubt-uni.net.

https://knowledgecenter.ubt-uni.net/
https://knowledgecenter.ubt-uni.net/conference
https://knowledgecenter.ubt-uni.net/conference/2021UBTIC
https://knowledgecenter.ubt-uni.net/conference?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2021UBTIC%2Fall-events%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2021UBTIC%2Fall-events%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference/2021UBTIC/all-events/388?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2021UBTIC%2Fall-events%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:knowledge.center@ubt-uni.net

Workplace Chat Application Using Socket

Programming in Python

Egzon Salihu1*, Gentiana Blakaj2

 UBT- Higher Education Institution, Kosovo, Prishtina

1es44550@ubt-uni.net 2gb46704@ubt-uni.net

Abstract. A chat is a real-time communication with one or more users

connected to the internet. Chat applications are very necessary at this time in a

workplace to communicate employees with each other for company purposes.

In Python programming, this type of communication is possible to do using the

library sockets, which enables connecting two nodes on a network to

communicate with each other. We represent in this paper how to build a chat

application that uses a server to connects multiple users and let them

communicate with each other using the TCP protocol. Threads are used for

parallel programming to send and receive messages in real-time which makes

this chat application very useful even if there are a lot of clients connected at

the same time.

Keywords: Client, Server, Sockets, Communication, Chat Application

1 Introduction

A chat is a text-based communication via keyboard or any input device. When talking

to someone in a chat any typed text is received by other participants in real-time over

the internet or on a local network [2,3]. Recently, there is a growing need to

communicate with colleagues during working hours to answer questions, get support,

or achieve greater efficiency in performing various tasks, so the idea came to us to

create this simple application, which requires minimal resources and is easy to use

from everyone[1,6]. To achieve that we used Python because is a great programming

language for computer networking also has a library called sockets where one node

listens on a port at IP address, and the other node reaches out to the other so together

will create an active connection[4]. Sockets were invented as a part of the BSD flavor

of Unix in Berkeley and are used nearly everywhere because everything you need to

know is the IP address of the server and the port number[5]. In this paper, we will

explain how socket programming works and how we used it to create our application.

2

2 Design and Implementation

For the design of our application, we have used the Client-Server architecture, where

a lot of clients can connect to the server, request and receive service, and

communicate with each other[7]. In figure 1 we represent how client-server

architecture will look like.

Fig. 1. Client-Server architecture[2]

To understand how socket programming works between the server and clients in

Python several components are important, so we will explain below socket functions

and methods:

▪ socket(), here we specify if we use IPv4 or IPv6 internet protocol, also TCP

or UDP protocol.

▪ bind(), will assign an IP address and a port number.

▪ listen(), the server will listen if there is any connection from clients.

▪ accept(), when a client connects server calls this.

▪ connect(), client will initiate the three-way handshake with the server.

▪ send(), data is send to client/server.

▪ recv(), data is receive from client/server.

▪ close() both the server and clients close the connection[9].

In the figure 2 below we represent how the server and client communicate with each

other using TCP protocol.

 3

Fig. 2. Communication between client and the server using TCP protocol[8]

As we see in figure 2 both the server on the left and the client on the right has a socket

because in the socket is stored the IP address and the port number. The entered IP

address and the port number of the client should be the same as the server. In the Bind

will be stored the IP address and the port number. Now the server will listen if is any

connection from clients. When clients get connected, the server will immediately call

accept, and the client will call connect, because we are using TCP in this step will

happen three-way handshake between the server and a client so our connection is

reachable over the network. When a client sends data to the server, in this case, a

client will call send, the server will call recv, and vice-versa. If a client wants to

terminate the connection it will send a close message, and the server will immediately

call close. So, in this way is made the connection and transfer data between the server

and the client in socket programming in python[10]. Our project is realized in two

modules, server.py and the module chati.py, both modules are using Program

Oriented Programming which are involved Abstract classes, Methods, Functions,

Inheritance (Hierarchical), Encapsulation (private variable, protected variable),

Polymorphism (Method overloading), and Threads.

4

2.1 Code snippets about Server part

In this section we will represent our server side that we implemented. In figure 3 is

shown the module server.py after it is executed.

Fig. 3. Executed form of the module Serveri.py

When the server executes as in figure 3 it will show the IP address of the server, also

it will display all the information’s like:

Server has IP address: 192.168.0.31

Server is starting, please wait!

The messaging system for users who will be connected in chat started

working!

Server has successfully started working, proceed with communication!

When a new client is connected to the server it will show:

New user connected to the chat is: #xXxonS

New user connected to the chat is: Genta

When a client leaves the chat, it will show:

The Chat left: #xXxonS

In the background will always create a file log so we can see them if we want.

The Python code for the module Serveri.py is:

import threading

import socket

from abc import ABC, abstractmethod

import time

Above we import the library called threading, socket, and ABC which stands for

Abstract Classes.

print("--------------------- C H A T S E R V E R -----

--------------")

class Serveri(ABC):

 __nrportit = 16000

 __ip=socket.gethostbyname(socket.gethostname())

 #__ip="5.206.239.54"

 print("Serveri ka ip adresen: ",__ip)

 time.sleep(1.2)

 5

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.bind((__ip, __nrportit))

 s.listen()

 pseudonimet= []

 @abstractmethod

 def njoftimi(self):

 pass

 perdoruesit = []

In the class Serveri(ABC) is defined the IP address of the server and the port number,

in the socket we have used AF_INET which is IPv4, and the SOCK_STREAM

stands for TCP protocol. Then bind will store the private variable IP address and the

port number, where port number can be any port which is free to use, in our case is

16000. Also, in this class we declare two empty lists pseudonimet and perdoruesit

which we will fill with data. This class has one abstract method called njoftimi(self)

which will be our abstract class.

class DergoMesazhet(Serveri):

 def njoftimi(self):

 print("Serveri eshte duke startuar, ju lutem pris

ni!")

 def TransmetoMSG(self, mesazhi):

 for perdoruesi in self.perdoruesit:

 perdoruesi.send(mesazhi)

As you can see the class DergoMesazhet is Inheriting Serveri class which has two

methods called njoftimit(self), and TransmetoMSG(self, mesazhi). First method

notifies us when the server is starting, and second method will send a message to each

perdoruesi that is connected in the perdoruesit list.

class ProcesoMesazhet(DergoMesazhet):

 def njoftimi(self):

 print("Filloi punen sistemi i dergimit te mesazhe

ve për userat qe do te lidhen ne chat!")

 def Trajto(self,perdoruesi):

 while True:

 try:

 mesazhi = perdoruesi.recv(2048)

 self.TransmetoMSG(mesazhi)

 except:

 index = self.perdoruesit.index(perdoruesi

)

 self.perdoruesit.remove(perdoruesi)

 perdoruesi.close()

 pseudo = self.pseudonimet[index]

6

 self.TransmetoMSG('Nga chati doli: {}'.fo

rmat(pseudo).encode('utf-8'))

 self.pseudonimet.remove(pseudo)

 print("Nga chati doli:{}".format(pseudo))

 break

The class ProcesoMesazhet is inheriting DergoMesazhet, has two methods

njoftimit(self), and Trajto (self, perdoruesi). First method notifies us the messaging

system started working, and second method is in infinite loop and won’t stop unless

an exception occurs. This method receives messages from a client and share it to all

clients. If any exception occurs it will remove the client that left from the server, so he

can access again the chat, also will close connection with that client. In server will

display the message who left the chat also in the client’s chat.

class StartoServerin(ProcesoMesazhet):

 def njoftimi(self):

 print("Serveri startoi punen me sukses, vazhdoni

komunikimin!")

 def PranoMSG(self):

 while True:

 perdoruesi, adresa = self.s.accept()

 perdoruesi.send('MARRESI'.encode('utf-8'))

 pseudo = perdoruesi.recv(2048).decode('utf-

8')

 self.pseudonimet.append(pseudo)

 self.perdoruesit.append(perdoruesi)

 print("Perdorusi i ri i lidhur ne chat eshte:

{}".format(pseudo))

 self.TransmetoMSG("U lidh ne chat: {}".format

(pseudo).encode('utf-8'))

 perdoruesi.send('Tani filloni biseden me posh

te!'.encode('utf-8'))

 th3 =threading.Thread(target=self.Trajto, arg

s=(perdoruesi,))

 th3.start()

The class StartoServerin is inheriting ProcesoMesazhet, also this class has two

methods njoftimit(self), and PranoMSG(self), the first method will notify us that

server started working successfully, and the second method is in infinite loop because

all the time accept new connection from clients. If a client is connected it sends

MARRESI and will tell the client his nickname is required. In this method we will

encode messages with utf-8, and we are using 2048 byte for the length of the

message. Also, in this method we are using a thread th3 which has the target Trajto

and the argument perdoruesi.

 7

def fillo_ekzekutimin():

 b_obj=DergoMesazhet()

 c_obj=ProcesoMesazhet()

 d_obj=StartoServerin()

 b_obj.njoftimi()

 time.sleep(2)

 c_obj.njoftimi()

 time.sleep(2)

 d_obj.njoftimi()

 d_obj.PranoMSG()

if __name__=='__main__':

 fillo_ekzekutimin()

In the end of the server.py we have two functions fillo_ekzekutimin() and

__name__== ‘__main__’, first function will create objects for the classes we created

above and initialize them, and the second one will call the function

fillo_ekzekutimin().

2.2 Code snippets about Chat part

In this section we will represent our chat side that we implemented. In figure 4 is

shown the module chati.py after it is executed.

Fig. 4. Executed form of the module Chat.py

When the chat executes as in figure 4 user must:

 Enter the IP address of the server, if the IP address is wrong the chat will be

closed.

 Enter Name and Surname, if user doesn’t fill this field it will show Welcome

user!

 Enter the password, if the password is wrong user has to write it again.

8

 Enter the nickname, this field is obligatory, otherwise u cant start the chat

without filling.

When all the fields above are filled it will display:

 Welcome: Egzon Salihu.

 Connection with the server successfully started, please wait!

 Now you are ready to communicate!

 Connected to chat: #xXxonS

 Now start chatting below:

 Connected to chat: Genta, as u can see new user is connected now.

 Genta says: Hello to everyone

 #xXxonS says: Hello @Genta how are you with your health?

 Genta left the chat, if any user will leave it will appear.

The Python code for the module Chati.py is:
import socket

from threading import *

from abc import ABC, abstractmethod

import time

Above we imported the library called socket, threads, ABC which stands for Abstract

Classes, and time.

print("--------------------- C H A T --------------------

-")

__ip=input("Jepni ip adresen e serverit sakt: ")

perdoruesi = socket.socket(socket.AF_INET, socket.SOCK_ST

REAM)

try:

 perdoruesi.connect((__ip, 16000))

except:

 print("Keni shenuar ip adresen e serverit gabim!")

 print("Chat do te mbyllet automatikisht")

 time.sleep(4)

 exit()

In the section of the code above we have private variable called IP which says to enter

the IP address of the server, another variable declared is perdorusi which will store

socket (AF_INET, SOCK_STREAM). We also can see above an exception, this will

check if the connection is starting, if nots than will show the message IP address is

wrong and close the chat automatically in 4 seconds.

class Personi():

 def __init__(self,__emrimbiemri=input("Ju lutem sheno

ni emrin dhe mbiemrin: ")):

 self.__emrimbiemri=__emrimbiemri

 if __emrimbiemri !="":

 print("Mire se na vini:",__emrimbiemri)

 9

 else:

 print("Mire se na vini: Perdorues")

In the class Personi is a constructor with private variable emrimbiemri. In this

variable the user need enter name and surname, if the user doesn’t fill this field than

message will be displayed Welcome: user, here we achieved Polymorphism.

class Komunikimi(ABC):

 __fjalkalimi=input("Ju lutem shenoni fjalkalimin:")

 while True:

 if __fjalkalimi !="123456":

 print("Fjalkalimi i dhene eshte i pasakt!")

 __fjalkalimi=input("Ju lutem shenoni fjalkali

min sakt per te vazhduar ne chat")

 else:

 print("Fjalkalimi i sakt!")

 break

 pseudo=input("Ju lutem zgjedhni pseudonimin tuaj:")

 while True:

 if pseudo=="":

 print("Ju duhet te shenoni patjeter nje pseud

onim per te filluar komunikimin!)

 pseudo=input("Ju lutem shenoni nje pseudonim:

")

 else:

 break

 @abstractmethod

 def njoftimi(self):

 pass

The class Komunikimi is abstractclass with an abstract method called njoftimit(self),

in this class is declared private variable fjalkalimi which will be store our password.

Also, above is declared pseudonimi which stores nickname of the user, which should

be filled anyway.

class KomunikoMeServer(Komunikimi):

 def njoftimi(self):

 print("Lidhja me serverin u realizua me sukses, j

u lutem prisni pak!")

 def PranimiMSG(self):

 while True:

 try:

 mesazhi = perdoruesi.recv(2048).decode('u

tf-8')

 if mesazhi == 'MARRESI':

 perdoruesi.send(self.pseudo.encode('u

tf-8'))

 else:

10

 print(mesazhi)

 except:

 print("Lidhja me serverin u nderpre!")

 perdoruesi.close()

 break

The class KomunikoMeServer is inheriting Komunikimi has two methods called

njoftimit(self) and PranimiMSG(self), the first method will show as Connection with

the server is successful, and the second method have infinite loop because constantly

tries to receive messages and show them on the screen.If there is any exception it will

close the connection. Also, if the message is MARRESI it doesn’t print on the screen

but sends its nickname to the server. As we can see in this class all the messages

decode when we receive and encode when we send them with utf-8. Length of the

message is 2048 bytes, which will be enough for large messages.

class MesazhetNeServer(KomunikoMeServer):

 def njoftimi(self):

 print("Tani jeni i gatshem per te komunikuar!")

 def DergoMSG(self):

 while True:

 mesazhi = '{} shenoi: {}'.format(self.pseudo,

 input(''))

 perdoruesi.send(mesazhi.encode('utf-8'))

The class MesazhetNeServer is inheriting KomunikoMeServer, this class has two

methods njoftimi(self) and DergoMSG(self), first method shows the notification Now

you are ready to communicate, and the second one has infinite loop because is always

waiting for a user input. If the user input something than this function will combinate

message with the nickname and will send to the server.

def starto_ekzekutimin():

 p_obj=Personi()

 kms_obj=KomunikoMeServer()

 mns_obj=MesazhetNeServer()

 kms_obj.njoftimi()

 time.sleep(2)

 th1 = Thread(target=kms_obj.PranimiMSG)

 th1.start()

 mns_obj.njoftimi()

 time.sleep(2)

th2 =Thread(target=mns_obj.DergoMSG)

 th2.start()

 time.sleep(2)

if __name__=='__main__':

 starto_ekzekutimin()

 11

In the end we have two functions called starto_ekzekutimin(), and

__name__=='__main__', first function will create objects for the classes we created

above and initialize them, in this function we have used two threads th1 will receive

messages and has no arguments and th2 will send messages also has no arguments.

The second function will call the function starto_ekzekutimin().

3 Testing and Validation

To test our application, you can download it in our GitHub profile, where the link is

described below in Appendix A. First of all, you need to install python 3.9.1 or

greater so you can open all of our python scripts, also you should have an active

internet connection. File serveri.py is needed to run all the time in a local server or in

the cloud server, serveri.py automatically creates logs so you can see the IP addresses

and nicknames of everyone who was connected. File chati.py should be started in all

employ’s computers, users have to input the IP address of the server, password of the

application which in our case password is “123456”, name and surname, and their

nickname which is the key to send messages. Where the employees are online in the

chat they can send and receive messages in real-time from everyone who is

connected.

 4 Related work

Nowadays are many chat applications that use socket programming because are the

bests for real-time applications. Social giant Facebook use sockets so users don’t have

to refresh the page to see if there are any new messages or any activity in their

account. We use a lot of instant messaging applications like WhatsApp, Viber, Kick,

etc. In the past, they were very simple just for text messaging, and now can send files,

can make video calls, etc. All of those mentioned above are implemented in other

program languages using the same logic but not in Python as we did.

5 Conclusions and Future Work

When developing a chat application one of the difficulties is to ensure secure

communication between the client and the server[4]. Messages that are sent to each

other must be ensured that they will be accepted by all online users. For the best user

experience and secure connection is to use domain AF_INET which stands for IPv4,

and the type of connection SOCKET_STREAM which stands for TCP protocol.

Packets that are dropped in the network immediately are detected and will be

retransmitted by the sender so no data will be lost, one more important thing is

because all the data will be read by our application in the order it was written by the

sender. Also, it is mandatory for all messages that the user sends to encode them using

ASCII, Unicode, UTF-8, or UTF-16 and to decode when we receive them. The main

reason for that is because in socket programming you cannot send strings just

bytes[8]. The most important thing we conclude is if we don’t use threads for parallel

12

programming, we have to wait to receive data from the server and then send our

messages to the server so this process is not an instant message. For this reason, we

have used threads to enable us to constantly receive data from the server and at the

same time send our messages to the server. The file sending and windows form

application is our next subject to ongoing developments. Based on the user’s

feedback, our system will be further enhanced and evaluate.

References

1. Abhishek Ratan, Eric Chou, Pradeeban Kathiravelu, Faruque Sarker, Learning Path-

Python Network Programing, 31 January, 2019.

2. John Goerzen, Tim Bower, Brandon Rhodes, Foundations of Python Network

Programming, Second Edition, 21 December 2010.

3. SINGH, AJIT, PYTHON SOCKET PROGRAMMING, 2019.

4. Adam Bash, Python Programming, 31 October, 2019.

5. John M. Zelle, Python Programming: An Introduction to Computer Science (3rd

Edition), 1 January 2016.

6. Faruque Sarker, Sam Washington, Learning Python Network Programming, 2015.

7. Wajid Hassan, Python ScrIPting for Network Engineers, 2019.

8. Jessica McKellar, Abe Fettig, Twisted Network Programming Essentials, 2013.

9. Hemant Kumar Srivastava, Rounak Sinha, Sumita Gupta, Implementation of Socket

Programming and RMI Using Simulating Environment, International Journal of

Scientific & Engineering Research, Volume 4, Issue 5, May-2013.

10. Avinash Bamane, Parikshit Bhoyar, Ashish Dugar & Lineesh Antony, Enhanced Chat

Application, Global Journal of Computer Science and Technology Network, Web &

Security Volume 12, Issue 11, Version 1.0, June 2012.

Appendix: A

Everyone interested in our chat application to test it or to use it for his company you

can get this app in our GitHub account:

https://github.com/Geentiana/Projekti_Python_SC

	Workplace Chat Application Using Socket Programming in Python
	Recommended Citation

	OLE_LINK1

