
University for Business and Technology in Kosovo University for Business and Technology in Kosovo

UBT Knowledge Center UBT Knowledge Center

UBT International Conference 2021 UBT International Conference

Oct 30th, 9:00 AM - 10:30 AM

Software Automated Testing using BDD Approach with Cucumber Software Automated Testing using BDD Approach with Cucumber

Framework Framework

Arbesë Musliu
University for Business and Technology - UBT, am46107@ubt-uni.net

Xhelal Jashari
University for Business and Technology - UBT, xhelal.jashari@ubt-uni.net

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/conference

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Musliu, Arbesë and Jashari, Xhelal, "Software Automated Testing using BDD Approach with Cucumber
Framework" (2021). UBT International Conference. 409.
https://knowledgecenter.ubt-uni.net/conference/2021UBTIC/all-events/409

This Event is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It
has been accepted for inclusion in UBT International Conference by an authorized administrator of UBT Knowledge
Center. For more information, please contact knowledge.center@ubt-uni.net.

https://knowledgecenter.ubt-uni.net/
https://knowledgecenter.ubt-uni.net/conference
https://knowledgecenter.ubt-uni.net/conference/2021UBTIC
https://knowledgecenter.ubt-uni.net/conference?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2021UBTIC%2Fall-events%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2021UBTIC%2Fall-events%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference/2021UBTIC/all-events/409?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2021UBTIC%2Fall-events%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:knowledge.center@ubt-uni.net

Software Automated Testing using BDD

Approach with Cucumber Framework

Arbesë Musliu

1
, Xhelal Jashari

2

1,2UBT, Prishtina, Kosovo

am46107@ubt-uni.net
1
, xhelal.jashari@ubt-uni.net

2

Abstract. Software testing is becoming essentially needed nowadays, but at the

same time is becoming more complex and taking more resources. Software

development using agile methodology helps us deliver a considered number of

versions in a short amount of time. However, using these methodologies means

that we have to repeatedly test each version by testing all functionalities,

including the updated ones. This research paper will show the importance of

Automation Testing using the Cucumber framework and behavior driven

development (BDD) approach to test new features and maintain the previous

ones. We will show the implementation of the Cucumber framework using

Selenium WebDriver with Java programming language using BDD scenarios.

This paper provides real-life examples of how we can test and automate software

testing in best practices. At the same time, the following process relates to test

plan, previous and actual test cases, test analyses, test environment, test

execution, and test reporting. By developing those examples, automation tools

are necessary process and low cost to maintain the developed software and offer

good quality products in the software applications industry.

Keywords: Software Testing, Automation Tools, Cucumber, Selenium,

WebDriver, BDD, Quality Assurance

1. Introduction

Requirements changing, need to go faster to market, delivering product in short

amount of time are some of the main factors when it comes to Software

Development. Testing is an essential part of any software development life cycle

model [9]. Being able to deliver a bug free software is very hard when you work

on agile methodology. Even after you have tested the software in all procedures

and processes inside your company it is hard to maintain the software due to

requirements change and new features added from client requests.

This is especially true for regression testing due to its normal growth because

today’s testing of a new feature will become future’s regression test. To handle

with increasing demand on frequent testing, usually with small amount of

resources, the test automation is an important strategy to deal with this challenge.

But, what basically is Software Automation Testing? Software automation testing

is Software testing but now you will be using tools and software so you can test

a Software. Let’s dive a bit more into it and make it even simple. Automation

testing is writing test cases on scripts that you can execute in order to test software

products. Nowadays you can use a lot of tools and frameworks to create and run

scripts.

The transition from manual testing to automation testing it’s another thing that

software companies that work in an agile environment are facing as an immediate

and important factor to grow and deliver quality at the same time. We have

explored and will give you a deep understanding of BDD Cucumber Framework

as a very good practice of transition from manual testing to automation testing.

An automated test framework may be loosely defined as a set of abstract

concepts, processes, procedures and environment in which automated tests will

be designed, created and implemented. In addition, it includes the physical

structures used for test creation and implementation, as well as the logical

interactions among those components [2].

One thing that we should state is that automation testing cannot be done without

manual testing, but automation testing comes in play when you have to maintain

big software’s, instead of repeating manually all the test cases when you add a

new feature you can create a regression suite and add there all the test cases so

whenever you need you just can execute regression suite.

Another main thing for nowadays companies are having great communication

and understanding between technical and non-technical people within a

company. That’s when BDD Cucumber Framework stands up from the rest, with

the usage of the Gherkin language we are able to write test scenarios that can be

understood also by non-technical stakeholders like Product Owners, Business

Analysts, Project Managers, etc.

Besides, when automation testing is needed in this paper we will also show the

situation when we do not need the automation testing such as small projects, need

of a lot of resources and the cost is high and there is no return in investment.

2. Literature Review

What is Software Testing?

Software Testing means the process of defining Test Stories (or Test Scenarios),

each containing Test Cases, and executing them with the aim of detecting

unexpected behavior.[9] As per ANSI/IEEE 1059, Testing in Software

Engineering is a process of evaluating a software product to find whether the

current software product meets the required conditions or not.

Here are the advantages of using software testing:

Cost-Effective: It’s one among of the most important advantages of software

testing. Testing any IT project on time helps you to avoid wasting your money

for the long run. Just in case if the bugs caught within the earlier stage of software

testing, it will have less cost fixing that bug.

Security: It is the foremost vulnerable and sensitive advantage of software

testing. People are in need for trusted products. It helps in removing risks and

problems earlier.

Product quality: It is a basic requirement of any software product. Testing

makes sure a quality product is delivered to customers.

Customer Satisfaction: The aim of any product is to bring satisfaction to their

customers. UI/UX Testing ensures the most satisfying user experience.

What is and what are the types of Automated Testing

Automated software testing is the ability to have a software tool or suite of

software tools test your applications directly without human intervention.

Generally test automation involves the testing tool send data to the application

being tested and then compare the results with those that were expected when the

test was created [6].

The test automation can be applied on both black box and white box testing types.

The process of testing the executable program without referring the source code

is called black box testing. White box testing deals with executing special test

cases, in specific branches and paths in source code. Numerous types of test

automations are available under the black box and white box testing labels. Few

types of test are not feasible to perform manually [2].

Functional Test

The functional tests have many responsibilities, as it is kind of black box testing

and main aim of these tests is to make sure that the system meet the customers’

requirements. Furthermore, the functional tests are performed to ensure that the

goals and metrics have been met, such as the systems performance metrics. The

functional test, are often replacements of manual black box testing. The test cases

are executed that produces the documentations in the form of graphs and results

summaries and the tools provide the ability to produce statistical results on

demand. Various kinds of tests fall under the umbrella of functional test [2].

Regression Testing

Regression Testing is a sort of testing that is performed to ensure that a code

change within software does not crash the existing functionality of the product.

This is to make sure that the software works fine with new functionality, bug

fixes or any changes to the existing feature. Previously executed test cases are

re-executed so we can verify the impact of the change.

Unit Testing

The Unit testing part of a testing methodology is the testing of individual software

modules or components that make up an application or system. These tests are

usually written by the developers of the module and in a test-driven-development

methodology (such as Agile, Scrum or XP) they are actually written before the

module is created as part of the specification. Each module function is tested by

a specific unit test fixture written in the same programming language as the

module [7].

User Interface (UI) Testing

In an ideal world, the presentation layer would be very simple and with sufficient

unit tests and other code-level tests (e.g. API testing if there are external

application program interfaces (APIs)) you would have complete code coverage

by just testing the business and data layers.[5] Unfortunately, reality is never

quite that simple and you often will need to test the Graphic User Interface (GUI)

to cover all of the functionality and have complete test coverage. That is where

GUI testing comes in [7].

API Testing

API testing involves testing the application programming interfaces (APIs)

directly and as part of integration testing to determine if they meet expectations

for functionality, reliability, performance, and security. Since APIs lack a GUI,

API testing is performed at the message layer.[6] API testing is critical for

automating testing because APIs now serve as the primary interface to application

logic and because GUI tests are difficult to maintain with the short release cycles

and frequent changes commonly used with Agile software development and

DevOps.[8]

Performance, Load, Stress Testing

There are several different types of performance testing in most testing

methodologies, for example: performance testing is measuring how a system

behaves under an increasing load (both numbers of users and data volumes), load

testing is verifying that the system can operate at the required response times

when subjected to its expected load, and stress testing is finding the failure

point(s) in the system when the tested load exceeds that which it can support.

Manual versus Automated Testing

In manual testing, the tester assumes the role of a user executing the system under

test (SUT) to verify its behavior and ¬any observable defects. In automated

testing, developers develop test code scripts (for example, using the Selenium

framework) that execute without human intervention to test the SUT’s behavior.

If planned and implemented properly, automated testing can yield various

benefits over manual testing, such as repeatability and reduced test costs (and

thus effort). However, if not implemented properly, automated testing will

increase costs and effort and could even be less effective than manual testing.

Selenium

Selenium is possibly the most popular open-source test automation framework

for Web applications[2]. It originated in 2000s and evolved over a decade.

Selenium has been an automation framework of choice for Web automation

testers, especially for those who possess advanced programming and scripting

skills. Selenium is a core framework for other open-source test automation tools

such as Katalon Studio, Watir, Protractor, and Robot Framework [2].

Selenium supports multiple system environments such as Windows, Mac, Linux,

and browsers such as Chrome, Firefox, IE, and Headless browsers. The scripts

can be written in various programming languages such as Java, Groovy, Python,

C#, PHP, Ruby, and Perl.

While testers have flexibility with Selenium, and they can write complex and

advanced test scripts to meet various levels of complexity, it requires advanced

programming skills and effort to build automation frameworks and libraries for

specific testing needs.

Selenium WebDriver is the greatest change in Selenium recently. Selenium-

WebDriver makes direct calls to the browser using browser’s native support for

automation.

To install Selenium means to set up a project in a development so a program can

be written using Selenium. Setting of the driver depends on the chosen

programming language and the development environment.

The easiest way to set up a Selenium 2.0 Java project is to use Maven.

Maven will download the Java bindings - the Selenium 2.0 Java client

library and all its dependencies. This will create the project, using a maven

pom.xml (project configuration) file. Once these steps are executed, the maven

project is ready to be imported into the preferred IDE, IntelliJ IDEA or Eclipse

[2].

Behavior Driven Development

The key to success in BDD lays with the execution of the acceptance tests which

describe in an easily understood and easily definable manner a scenario which

consists in defining the context, the executed actions and the expected response.

BDD (Behavior Driven Development) – is a growing methodology which relies

on the principles of Agile. It was developed by Dan North [1] as an answer to the

principles promoted by the TDD (Test Driven Development) approach. BDD

uses a level of abstraction which allows for the use of the framework by

nontechnical people. The level of abstraction consists in a DSL (Domain Specific

Language) called the Gherkin language.

In BDD, the scenarios of the acceptance tests are explicitly defined by the

following syntax [4]:

Given <defining an initial context>

 When <executing certain actions or steps>

 Then <defining the expected results>

The requirements of the software applications or the behavior of the application

are defined using the former structure, where the keywords, Given, When, Then

are defined as Steps. Each set of steps is parsed and executed by a specific BDD

Framework which transforms the business requirements into technical details,

code classes and test methods.

This scenario format is proving very useful in aligning knowledge and

understanding the common principles among programmers, testers and the final

client. Moreover, these steps will serve as documentation for the developed

application.

What is Cucumber?

Cucumber is a tool that supports Behaviour-Driven Development(BDD). If

you’re new to Behaviour-Driven Development read our BDD introduction first.

Cucumber reads executable specifications written in plain text and validates that

the software does what those specifications say. The specifications consists of

multiple examples, or scenarios [13]. For example:

Figure 1Scenario example taken from Cucumber.io[13]

Each scenario is a list of steps for Cucumber to work through. Cucumber verifies

that the software conforms to the specification and generates a report indicating

✅ success or ❌ failure for each scenario [13].

In order for Cucumber to understand the scenarios, they must follow some basic

syntax rules, called Gherkin [13].

What is Gherkin?

Gherkin is a set of grammar rules that makes plain text structured enough for

Cucumber to understand. The scenario above is written in Gherkin [13]. Gherkin

serves multiple purposes [13]:

Unambiguous executable specification;

Automated testing using Cucumber;

Document how the system actually behaves;

Single source of Truth;

The Cucumber grammar exists in different flavours for many spoken languages

so that your team can use the keywords in your own language [13]. Gherkin

documents are stored in .feature text files and are typically versioned in source

control alongside the software.[13]

What are Step Definitions?

Step definitions connect Gherkin steps to programming code. A step definition

carries out the action that should be performed by the step. So step definitions

hard-wire the specification to the implementation.[13]

Step definitions can be written in many programming languages. Here is an

example using JavaScript:

When("{maker} starts a game", function(maker) {

 maker.startGameWithWord({ word: "whale" })

})

What is Scrum?

Scrum is a framework that helps teams work together. Much like a rugby team

(where it gets its name) training for the big game, scrum encourages teams to

learn through experiences, self-organize while working on a problem, and reflect

on their wins and losses to continuously improve [14]. Others see Scrum as a

framework within which people can address complex adaptive problems, while

productively and creatively delivering products of the highest possible value [15].

Scrum is best suited in the case where a cross functional team is working in a

product development setting where there is a non-trivial amount of work that

lends itself to being split into more than one 2 – 4 week iteration [16].

3. Problem Declaration

The aim of all companies is that all of the software releases go to production

without a glitch, without defects, where all stakeholders are informed of the

outcomes and current status.

Today we have too many software releases in a short amount of time and we can

see that while companies are rushing to deliver they also are dropping software

failures. If we ignore this problem at some point resources will need to increase

in order to handle the not tracked issues or bugs, and we may miss critical client

deadlines which have consequences in lost revenue, penalties, lost business, and

further damage to our software quality. Another big issue for big companies

nowadays is maintaining the quality of the existing products while they add new

features to that product.

We will try to give a solution to those problems by using the BDD Cucumber

framework that has a very good approach to handling functional tests in an

automated way.

4. Methodology

In this chapter we present the approach of the work and the methods used in this

paper that aims to solve the problems stated above. We based our methodology

on literature browsing, web application development and testing:

Literature Review. - The sources used are mainly secondary data sources taken

from the literature and earlier research in the faculty, relevant books, scientific

journals, and as well articles by authors who already have a high academic

baggage.

Case Study.- We developed a Testing framework from scratch in order to test

and compare results. Our Framework consists of BDD Framework with a set of

technologies like Java Programming language, Selenium WebDriver, Cucumber,

etc.

5. Our Case study and Results

1.First we create a WebDriver class which is called as Selenium WebDriver

and is an interface that defines a set of methods. However implementation is

provided for by the browser specific classes. The WebDriver main functionality

is to control the browser. It even helps us to select the HTML page elements and

perform operations on them such as click, filling a form fields etc. The methods

appeared below contains all the necessary methods for different browsers specific

classes, which from those methods we do not need to download the WebDriver

file of a specific browser but we automatically already have the latest version of

those versions by using those methods. If we want to execute test cases in Google

chrome, we use ChromeDriver and so on and so far for the other types of browser.

There’s more to indicate for this class, we actually can run test cases in headless

which mean that a headless browser is a term used to define browser simulation

programs that do not have a GUI. These programs execute like any other browser

but do not display any UI. In headless browsers, when Selenium tests run, they

execute in the background.

2.Cucumber is a Testing Framework which allows us to create an structure. In

our case I create in java folder some main folders as:

GeneralUtils – which includes config files with methods that are going to be used

in steps definitions

Page objects – which includes page elements, page object with methods that will

used in page elements classes

Selenium WebDriver – includes the webdriver classes

Resources which contains:

Files – includes, photos, files, excel template etc.,

Configuration properties – includes url, credentials, browser type

Until In test folder are some other main folders as:

Features -> contains bdd scenarios (Test cases that gonna execute)

StepsDefinition -> contains methods that are going to be call in Page Elements

3.Writting test Cases. - After creating the project structure, we start to write test

cases that are going to be automated. Test cases are written in Gherkin Language.

We create every feature for every class, every feature contains multiple scenarios.

Scenarios is one of the core Gherkin structures. Consider a case, where we need

to execute a test scenario more than once. Suppose, we need to make sure that

the login functionality is working for all types of subscription holders. That

requires execution of login functionality scenario multiple times. Copy paste the

same steps in order to just re-execute the code, does not seem to be a smart idea.

For this, Gherkin provides one more structure, which is scenario outline.

4.After creating features, we create steps definitions for that features, so for

every step in scenarios we create method.

5.After that, we call all features in Cukes Runner Class, so we can execute them

all together.

6.Results after running tests, we can see the results that will show each test case

if it pass or failed. Also it will show time needed for execution of each test case

and overall execution of tests

7.Jenkins Plugin.- We can use a Jenkins Plugin that works with Cucumber so

we can generate different reports. Those reports can be configured to run on

specified time. For example it’s a good practice to run all the test in the morning

and when you go to work you can check if your app is up and running.

6. Conclusion

References

[1] D. Gafurov, A. E. Hurum and M. Markman, "Achieving Test Automation

with Testers without Coding Skills: An Industrial Report," 2018 33rd IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2018, pp.

749-756, doi: 10.1145/3238147.3240463.

[2] Maheen, Khutaija & Hameed, Kauser & Asif, Amna. (2019). Software Test

Automation.

[3] R. Broer Bahaweres et al., "Behavior-driven development (BDD) Cucumber

Katalon for Automation GUI testing case CURA and Swag Labs," 2020

International Conference on Informatics, Multimedia, Cyber and Information

System (ICIMCIS), 2020, pp. 8792,doi:10.1109/ICIMCIS51567.2020.9354325.

[4] A. Contan, L. Miclea and C. Dehelean, "Automated testing framework

development based on social interaction and communication principles," 2017

14th International Conference on Engineering of Modern Electric Systems

(EMES), 2017, pp. 136-139, doi: 10.1109/EMES.2017.7980399.

[5] K. Sneha and G. M. Malle, "Research on software testing techniques and

software automation testing tools," 2017 International Conference on Energy,

Communication, Data Analytics and Soft Computing (ICECDS), 2017, pp. 77-

81, doi: 10.1109/ICECDS.2017.8389562.

[6] Y. Labiche, "Test Automation - Automation of What?," 2018 IEEE

International Conference on Software Testing, Verification and Validation

Workshops (ICSTW), 2018, pp. 116-117, doi: 10.1109/ICSTW.2018.00037.

[7] V. Garousi and F. Elberzhager, "Test Automation: Not Just for Test

Execution," in IEEE Software, vol. 34, no. 2, pp. 90-96, Mar.-Apr. 2017, doi:

10.1109/MS.2017.34.

[8] C. Klammer and R. Ramler, "A Journey from Manual Testing to Automated

Test Generation in an Industry Project," 2017 IEEE International Conference on

Software Quality, Reliability and Security Companion (QRS-C), 2017, pp. 591-

592, doi: 10.1109/QRS-C.2017.108.

[9] Fehlmann, Thomas & Kranich, Eberhard. (2020). A Framework for

Automated Testing. 10.1007/978-3-030-56441-4_20.

[10] Curreri, Matthew. “Automation Test Blockchain: 2019 IEEE Automation

Test Conference.” 2019 IEEE AUTOTESTCON (2019)

[11] Axelrod, Arnon. (2018). Complete Guide to Test Automation: Techniques,

Practices, and Patterns for Building and Maintaining Effective Software Projects.

10.1007/978-1-4842-3832-5.

[12] Chaubal A. Pinakin, Mastering Behavior-Driven Development Using

Cucumber: Practice and Implement Page Object Design Pattern, Test Suites in

Cucumber, POM TestNG Integration, Cucumber Reports, and work with

Selenium Grid (English Edition). India, BPB Publications, 2021,

ISBN:9789391030476, 9391030475.

[13] Cucumber.io. 2021. Introduction - Cucumber Documentation. [online]

Available at:<https://cucumber.io/docs/guides/overview/> [Accessed 23 October

2021].

[14] Atlassian. 2021. Scrum - what it is, how it works, and why it's awesome.

[online] Available at: <https://www.atlassian.com/agile/scrum> [Accessed 23

October 2021].

[15] Scrum.org, 2021, What is Scrum?, [online] Available at:

<https://www.scrum.org/resources/what-is-scrum> [Accessed 23 October 2021].

[16] Agile Alliance |. 2021. What is Scrum?. [online] Available at:

<https://www.agilealliance.org/glossary/scrum/> [Accessed 23 October 2021].

	Software Automated Testing using BDD Approach with Cucumber Framework
	Recommended Citation

	tmp.1656408626.pdf.SzRVW

