
University for Business and Technology in Kosovo University for Business and Technology in Kosovo

UBT Knowledge Center UBT Knowledge Center

UBT International Conference 2023 UBT International Conference

Oct 28th, 8:00 AM - Oct 29th, 6:00 PM

Development of the application for cinema management with .net Development of the application for cinema management with .net

technology technology

Enise Hasanaj
University for Business and Technology - UBT, eh47364@ubt-uni.net

Lavdim Beqiri
University for Business and Technology - UBT, lavdim.beqiri@ubt-uni.net

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/conference

Recommended Citation Recommended Citation
Hasanaj, Enise and Beqiri, Lavdim, "Development of the application for cinema management with .net
technology" (2023). UBT International Conference. 7.
https://knowledgecenter.ubt-uni.net/conference/IC/CS/7

This Event is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It
has been accepted for inclusion in UBT International Conference by an authorized administrator of UBT Knowledge
Center. For more information, please contact knowledge.center@ubt-uni.net.

https://knowledgecenter.ubt-uni.net/
https://knowledgecenter.ubt-uni.net/conference
https://knowledgecenter.ubt-uni.net/conference/IC
https://knowledgecenter.ubt-uni.net/conference?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2FIC%2FCS%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference/IC/CS/7?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2FIC%2FCS%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:knowledge.center@ubt-uni.net

Development of the

application for cinema

management with .net

technology

Enise Hasanaj1*, and Lavdim Beqiri2

1Kosovar, Peja, Kosova

eh47364@ubt-uni.net

2 Kosovar, Peja, Kosova

lavdim.beqiri@ubt-uni.net

Abstract. The research discusses an internet platform dedicated to cinema

management. The platform is built upon two key components: the user-facing

part and the backend operations. The visual part, also known as the Frontend in

the programming world, is developed using technologies such as HTML, CSS,

and JavaScript, offering a simple and user-friendly interface. On the other hand,

the server or backend where modifications and updates are made is built using

ASP MVC Core and the C# programming language. For data management,

SQL Server is used, which facilitates the staff's work in storing and accessing

cinema-related information.

Overall, this system allows the administration to have complete control over all

cinema functions. Responsibilities are divided among the main administrator,

manager, and receptionist, making interaction with customers easier and more

efficient. The platform primarily focuses on managing movie titles, screening

rooms, movie schedules, reservations, ticket sales, and user management,

providing a comprehensive solution for all these needs.

This online interface offers easy and quick access for both staff and customers

to obtain the desired information. Another important advantage is that it helps

minimize errors that can occur during various processes while significantly

reducing operational costs. This platform is designed to be accessible by all

team members, from the super-administrator who configures all system

parameters to the customers who want to watch a movie, making the cinema

available online 24/7.

Keywords: Internet platform, User-facing, Frontend, HTML, CSS, JavaScript,

Backend operations, ASP MVC Core, C# programming language, Data

management, SQL Server, Administration, Online interface.

1. Introduction

The cinema management system is an online platform built upon Microsoft technology, known as
ASP.NET MVC Core and is coded in the C# language. This platform is adaptable and compatible with
various browsers and different operating systems. This digital platform provides a convenient way to
oversee and coordinate all actions and operations within a cinema, simplifying and automating many daily
tasks, contributing to reducing the amount of work required to run the cinema. ((ZHANG, 2006)) It is a
valuable tool for having comprehensive oversight and a unified intervention in all actions and activities
taking place in the cinema environment. The platform for managing cinema operations is built upon a
range of advanced technologies and tools. Here are the technologies and programming languages used to
construct and optimize this system:

• Programming language C#
• Development framework ASP.NET Core MVC

• SQL database management system
• Object-relational mapping framework, Entity Framework

• Interface development languages, such as HTML, CSS, and JavaScript
• The library used for JavaScript manipulation is jQuery

• The stylistic and responsive framework, Bootstrap, for user interaction interfaces.

To effectively implement and manage these technologies, specific tools provided by Microsoft were used,
which are:

• Development environment Visual Studio 2019

• Environment for managing and interacting with the database: Microsoft SQL Server Management Studio
18.

2. Analysis of the application

The application's structure is built upon a three-tier model, where each tier has its specific functions and
responsibilities, thus simplifying and segregating responsibilities into different logical and physical layers.
This structural model is well-known and frequently used in software development, especially in those

following the client-server model. This architecture aids in performance optimization by separating the
application's logic in a way that each layer focuses solely on what it does best, and this segregation
facilitates faster and more robust application development.

Fig 1. Application architecture

2.1 What is the 3-tier architecture?

The three-tier architecture is a well-structured and organized approach to software development, which is
divided into three fundamental levels encompassing different aspects of the application. This division
includes: the user interface level, responsible for displaying and user interaction with the application; the
application logic level, where data processing and business logic occur; and finally, the data storage level,
dedicated to storing, managing, and protecting the application's data. This approach offers a clear
segregation of responsibilities and facilitates the management and expansion of the application in the
future. (Cloud, 2001) Among the most evident advantages of the three-tier model is the ability to treat
each level as an independent entity within the application's infrastructure. This separation consists of:

• The user interface level, which directly relates to how users view and interact with the software.
• The application logic level, where fundamental operations and business decision-making occur.
• And the data level, responsible for storing and managing information. (Hu, 2003)

With this structure, each layer can be treated as an independent project. This means that one development
team might work on the user interface while another could focus on the application logic and another on
data storage. Furthermore, changes or improvements to one layer can be made without significantly
affecting the other layers, allowing for quick adaptation to changing needs or new technologies. This
provides flexibility in development and maintenance of the software, making updates, expansions, or
necessary changes without disruption or consequence to other parts of the application.

Fig 2. Project structure

The figure above illustrates the construction and organization of the project. This project is divided and
structured into three main components:

Application Core - This is the heart of the application and contains the main logic and fundamental
functionalities that determine how the application will operate.

Infrastructure - This component is responsible for connecting and integrating various technical
resources, such as databases, external services, or any other tool that might be necessary for the proper
functioning of the application.

Web - This part represents the interface and visual portion of the application, allowing users to interact
and benefit from the functionalities the application offers.

This, dividing the project into these three components ensures that each part has its clear role and
responsibility, enabling better management and more effective code development.

2.2 Details of the three layers

Presentation Layer- The layer that is directly experienced by the user is called the presentation layer. It
serves as a “contact” between the user and the system and is responsible for presenting data and
information in a clear and usable manner. This is where users can see, interact with, and provide feedback
on the information presented by the application.

Primarily established to offer a visual and interactive experience for the user, this layer can be realized
through a web interface, a desktop application, or an interactive graphical interface, otherwise known as
GUI. When it comes to web interfaces, the most common technologies used to construct and style these
interfaces are HTML for the structure, CSS for styling, and JavaScript for interaction and dynamics.
Everything is designed to ensure a seamless and usable interaction between the user and the application.
(IBM Cloud, 2021)

Fig 3. Presentation Layer

The figure shows details of the presentation layer, which I have named "Web". This is the section where
information is structured and provided for viewing on a web page. More specifically, the presentation
layer is further divided into several sub-layers, each having their specific functions and roles within the
application.

These sub-layers are as follows:
User Management Sub-layer: This part is dedicated to the features and interfaces needed for users who
are part of the management, providing them with tools and information specific to their role.
Customer Sub-layer: This section is focused on the interaction of customers with the platform, offering
them a suitable and easy-to-use experience.
Common Sub-layer: This includes functionalities that are common and necessary for all users, such as
authentication and identification processes on the website.
This detailed division and specification help us better understand how information and interactions are
organized and provided for the various users of the application.

The application layer-also known as the business logic layer or the middleware layer, is the primary
point of interaction and data processing within a computer system. It acts as a mediator between what the
user sees and interacts with in the presentation layer and the data stored and managed in the database or
the corresponding data layer.

In this area, data received from the user interface is processed and analyzed using a set of rules and logic
specific to the application. This includes actions such as validating information, processing various
requests, and interacting with the database to perform operations like adding, modifying, or deleting data.

This layer is crucial to ensure the application operates correctly, adhering to all business rules and
requirements, and ensuring data is used and processed accurately and efficiently.

The data layer-also known as the primary information store or the data storage center, is the point where
all application information is stored and managed. This layer often resides in a database management
system, which might be of the relational type such as, for example, Oracle, MySQL, PostgreSQL,
MariaDB, or Microsoft SQL Server. However, in cases where the data is less structured and more
scalable, a NoSQL database like MongoDB, Cassandra, or CouchDB might be the appropriate solution.
(IBM Cloud, 2021)

In a three-tier architecture, communication between the presentation layer and the data layer doesn't occur
directly. Instead, every request and response must pass through the application layer, which acts as a
mediator, ensuring all data is processed and validated before being stored or presented to the user. This
strict separation aids in data protection and ensures the integrity of the information throughout the
application. (IBM Cloud, 2021)

2.3 Functional and non-functional requirements

When it comes to building software, it's essential to understand and define the requirements it needs to
meet. These requirements assist in determining what the software should do and how it should operate.
Typically, these requirements are categorized into two main groups:

Functional Requirements: These are specifications that outline the primary functions and operations that
software should provide. They are directly related to the actions and features that the software needs to
perform, considering the needs and expectations of its users. This includes, for example, actions like
creating an account, modifying a record, or searching for data.

Non-Functional Requirements: While functional requirements determine "what" the software does, non-
functional requirements define "how" it performs those tasks. They relate to the quality and performance
of the software. This might encompass issues such as how fast an application is, how secure it is from
external attacks, or how the software scales when there's a large number of users.

For a more detailed overview of these requirements, I have presented them in a table where they are listed
and described in detail.

Table 1. Functional requirement

 Category Functional requirement

Movie

• Complete movie registration details

• Updating movie information

• Deleting the movie from the database

o Sorting and filtering movies

Schedules • Updating the schedule's information

• Deletion of the schedule lists

• Organizing and filtering the schedule

• Registration of the schedule for the entire

week

Clients • Registration of the client with complete

details

• Reverification and updating of client

information

• Removal of a client from the system

• Organization, searching, and filtering of

the client list

• Client subscriptions

• Client reservations

• Viewing the ticket history

• Changes and updates in the client's profile

Halls • Registration of a new hall with all its

dimensions

• Modification and updating of the hall's

information

• Removal of a hall from the system

• Management and organization of the halls

Tickets • The capacity to create or generate tickets.

• The tools to modify or update tickets.

• The ability to remove or delete tickets.

• The tools to organize and filter tickets.

Booking • The capacity to make a reservation by

selecting the client, schedule, and seat

location.

• The option to review and modify the

information of a reservation.

• The action to remove or cancel an existing

reservation.

• Tools that allow specific sorting and

searching of reservations.

The manager • The ability to analyze and view statistical

data.

• The capacity to produce and extract

various reports.

• The option to change and refresh details of

the personal profile

Administrators • The capacity to oversee and control

financial transactions and payments.

• The ability to administer and modify ticket

information.

• The option to coordinate and manage hall

details.

• The activity of managing subscriptions and

their benefits.

• The responsibility to organize and change

movie data.

• The possibility to create, modify, and

manage various events.

• The capacity to monitor and manage

clients and their data.

• The ability to plan and update schedules.

• The option to change and refresh personal

profile details.

SuperAdmin • The ability to oversee and manage all

aspects of the system.

• Clear and unrestricted access to all

functionalities and data of the system.

• The capacity to control and manage all

users and their roles within the system.

Roles • The system consists of five user categories:

the Client, the Manager, the Administrator,

the Receptionist, and the Super Admin.

• Responsibilities and access to the system

should be divided and determined based on

the specific role of each user.

• A tailored interface is presented to the user

based on their credentials during

authentication.

The receptionist • The capacity to administer and coordinate

reservations.

• The ability to register new clients in the

system.

• The option to create and issue tickets.

• The activity of modifying and refreshing

personal profile data.

Statistics • All data related to the specific functions of

the cinema are recorded and stored

automatically.

• The data is stored in a format that is

suitable for analysis and creating statistics.

• Automatic generation of reports and charts

based on the gathered data for each

functional section of the cinema is

allowed.

Table 2. Non-functional requirements

Category Non-functional requirements

Interface • The user interface should provide familiar

and intuitive functionalities for users,

allowing for a simple and efficient use.

The content and text presented on the

interface should be clear and

straightforward, ensuring that the user

receives the intended message without any

ambiguity. It is important for the interface

to be "user-friendly", offering an

impeccable user experience free from

unnecessary complications. This assists in

the intuitive and comfortable use of the

application.

Software Specifications • It is recommended to choose SQL Server

as the base data platform for storage and

management of information. This will

ensure stability and high performance in

data storage.

Availability • It is expected that the system will be

available and operational without

interruption at all times, offering

uninterrupted access 24 hours a day and 7

days a week.

• Data preservation and recovery measures

should be fortified and of high maturity,

with a clear strategy for backup and

restoration of the database. This aims to

minimize the risk of information loss and

reduce potential periods of application

service interruption.

Performance • It is essential that the system manages and

stores a considerable amount of movies

and clients efficiently, ensuring that there

will be no interruptions or defects during

operation.

• When specific information is requested,

the system's response time to display the

data on the user interface should be fast

and optimal, not exceeding a threshold of

3 seconds.

Safety • The system is configured to accommodate

different categories of users, and for each

of them, there are specific levels of

authorization and access.

• Every transaction and communication

within the system must offer a high level

of security, relying on the most advanced

and current technologies in the field of

data security.

• User passwords should be processed and

stored in an encrypted (hash) manner,

ensuring protection from unauthorized

access.

• The Super Admin figure will have the

authority and capacity to intervene and

manage all aspects of the system, allowing

them to resolve any issue or problem that

may arise.

2.4 Diagrams

Use Case diagram is an important tool for focusing on the main functionalities and the way users interact
with a system or application. This diagram illustrates the primary behavior and functions of an application,
reflecting specific use cases and the actors that interact with them. Through it, a clear picture is created of
what the user can do with the system and how the system responds to these requests. ((Gemino, 2009)

Figure 1:Use Case Diagram

The figure presents the Use Case Diagram for the entire system platform. Analyzing this diagram
indicates that different users have varying levels of access and interaction depending on their function or
role within the system. Meanwhile, there are five categories of users: four of them are responsible for
managing and directing the system, while the fifth category is dedicated to clients who use the services
provided by this system.

Class Diagram In the field of software engineering, a class diagram based on the Unified Modeling
Language (UML) is a tool that represents the static construction and organization of a system. This
diagram provides a detailed view of the structure of an application or system, revealing the classes that
compose it, the specific features or attributes pertaining to each class, the functions or methods they
perform, and the connections and relationships that exist between them. It is a visual representation that
helps developers better understand and organize the interconnected components of the system they are
building.

Figure 6. Class diagram

In the figure, the class structure diagram of the system is presented, revealing their fundamental
components, such as the features and functions they include. This visualization brings out the
interactions and connections between these classes, offering a clear view of how they are
organized and interact within the overall system structure

The Entity Relationship Diagram visualizes how data is connected and structured amongst
themselves. An entity represents a distinct unit or component of information. When we talk
about a group of entities, we refer to a series of units with similar characteristics and features.
Each entity is described by specific attributes that define its features or specifications.
By clarifying these entities and their connections, the diagram conveys a picture of the data's
organization and interaction within a system. This type of diagram is a key tool to assist
developers in building and optimizing a database structure

Figure 7: Entity Relationship Diagram

In this figure, the basic structure of the application's database is presented, where tables, along with their
distinct characteristics, are distributed and connected. These reflective connections can be unique,
multiple, or inverse, creating a network of links between the tables. This provides a clear understanding of
how data interacts and is organized within the database system.

2.5 Configuration

The process of structuring the application is the responsibility of the super-administrator and includes
three essential phases:

Setting the company parameters
Configuring the connections with social networks
Determining and configuring the system parameters.

Figure 8: Setting the company parameters (Configuration)

In the figure, you can see the interface for entering the company's data, which will be the basis for
calculating and invoicing tickets.

Figure 9: Configuring connections with social networks (Configuration of all social networks)

The figure displays the interface for setting up social network connections. These connections will be

visible to clients in their interface.

Figure 10: Determining and configuring the system parameters

The figure shows the interface where technical data for configuration is required. This includes details
such as the SMTP server data for transmitting electronic messages, the geographical location of the
company on the map, the file extensions that can be uploaded, the maximum upload capacity, the
description and emblems of the company, and more.

3. RESULTS

After dividing the application into three main components - the part dedicated to management, the part
addressing client needs, and the part functioning as a common platform for all functions - it's important to
emphasize that this separation was done with the intent of optimizing and personalizing the experience for
different users. Considering this division, below I have presented the visual aspect of each of these
components, illustrating their interaction and specific function within the application's structure.

3.1 Management Part

Figure 11: Control and Statistics Interface

In the figure, the control and statistics section is presented, which is an interface that allows
managers and authorized users to view and analyze data in graphical and numerical form. This
interface provides a clear overview of the system's performance, helping users make informed
decisions based on concrete data.

Figure 12: List of Movies

In this interface, there is a structured list of movies and their main details. For each movie, an image is
displayed reflecting its content or the main scene, accompanied by a short description giving viewers a
clear idea of what to expect from the movie. The movie's name is prominently displayed, while other
details, such as the ticket price and the recommended viewer age, are clearly marked. Additionally, there's
an indicator showing whether the movie is currently being shown or not. At the end of each row, there are
additional options that allow actions such as editing, deleting, or adding new information for the specific
movie.

Figure 13: List of Halls

In this interface, a detailed list of halls and their specifications can be seen. For each hall, its
name is clearly highlighted followed by the movie projection technology in 2D or 3D format.
Next, the capacity of the hall shows the number of seats available for the audience. Also, a
visual indicator shows whether the hall is currently active and available for screenings or not.
For each hall, there are options available that offer the possibility to change the hall's data or, in
certain cases, to delete the hall from the system.

Figure 14: Schedule List

In this figure, a list of movie screening schedules and their specifications is displayed. For each screening,
the movie title that will be shown is emphasized first. Subsequently, details about the hall where the movie
will be screened are provided, giving an idea about the ambiance and the technology used. The start time
of the movie screening is highlighted with the exact date and hour. Following that, comes the end time of
the movie, indicating its duration. An indicator shows whether the movie screening is active or not.
Additionally, options are integrated that allow changes to the schedules or other related data, as well as the
ability to modify or delete schedules from the system

Figure 15: List of Reservations

In this figure, a detailed overview of reservations and the accompanying data is presented. Each
reservation has an identifier known as "Reservation ID". This identifier is linked to specific details such
as: the movie that's been reserved, the hall it will be screened in, as well as the date and time of the
screening. The client who made the reservation is highlighted by name. On this list, users can also see the
seat chosen by the client and the payment status, which can indicate whether the payment is still pending
or has been completed. This list also provides information regarding the reservation's activity - whether it's
still valid or not. To conclude, users have several options at their disposal to intervene in the reservation,
including generating the ticket, modifying the reservation, or deleting it

Figure 16: Interface for Adding Reservations

In this figure, the interface for adding reservations is displayed. All users who are part of the
staff can access it. When clicking on "Add Reservation", the movie's ID and the name of the
client wanting to make a reservation are shown. Also, the seat selection for the client is
facilitated. Seats that are already reserved are displayed in red, while the available seats are
marked in gray

Figure 17: List of Tickets

In this figure, a list of tickets and their corresponding details is presented. Each displayed ticket has
several essential pieces of information. This includes the name of the client who purchased the ticket, a
serial number that uniquely identifies the ticket, the date and time when the ticket was issued, and a
number associated with the anticipated reservation. The payment status is a key component of the list,
indicating whether the ticket has been fully paid for or is still awaiting payment completion. The total
amount paid or due is also highlighted. Lastly, users have several options available to intervene or take
additional actions regarding the ticket, whether through modifications, verifications, or other action

Figure 18: Ticket Generation

In this figure, ticket generation for all staff members is presented. They can generate a ticket, where
during this ticket generation process all the cinema's details and the data of the client who made the
reservation are displayed. A portion of the ticket displays the ticket's serial number, the reservation ID,
and the payment deadline. Also, information about the movie the client has chosen to watch is presented,
including elements like the movie poster image, the movie's name, the hall the client has chosen, and the
selected technology for viewing the movie (2D or 3D). Additionally, the ticket is attached with
information about the number and the seat chosen by the client, as well as the start and end times of the
movie screening. Also, on the ticket, there is a payment option where users have several possible payment
methods such as cash, Visa card, and PayPal, presented on the right side of the ticket. The obligated
payment amount is clearly displayed, along with other options. Besides the aforementioned details, the
ticket also displays an option to print the ticket.

Figure 19: Client List

In this figure, an overview of clients and their defining data is seen. Each client on this list is identified
through several key elements. Besides the client's image which offers visual identification, the first and
last name are emphasized for quick recognition. The email and phone number provide means of
communication with the client. The registration date indicates when the client first joined the service or
platform. Additionally, the client's activity status is displayed to show whether their account is active or
not. For each client, there are options for intervention or further modifications, which may include
changes to their data or the deletion of their account

Figure 20: Staff List

In this figure, a comprehensive list of staff members and their specifics is displayed. Each
member is represented with a photo that aids in quick visual recognition. The first and last
names are clearly displayed for recognizing each staff individual. The email address assists in
electronic identification and communication with them. Furthermore, the role of each member is
specified, indicating which position they occupy, such as admin, superadmin, receptionist, or
manager. The registration date has its significance, indicating when this member joined the
team. Information about status indicates whether that staff member's profile is currently active or
not. Additionally, there are options to intervene in each member's profile, altering or updating it
as needed

3.2 Pjesa e klientit

Figure 21: Main Homepage

On the system's homepage, the client is presented with an attractive and functional interface that
aids in simple and quick navigation. Upon entering the system, the first thing that catches the
eye is a central section where several motivational quotes or brief information about the latest
movies and suggestions to make a ticket reservation are placed.

Furthermore, a search engine is integrated. Clients can directly search for the movies they have
in mind by typing the movie title or part of it. This facilitates a faster and clearer use of the
platform.

On the right side of the screen, a special section is dedicated to upcoming movies in the cinema.
This helps clients consider and plan their upcoming cinema visits.

One of the most distinctive features of the interface is the "subscribe" or subscription option.
Clients who choose to subscribe can enjoy a range of exclusive advantages and benefits on the
platform, such as discounts, early information on movie premieres, or special offers. On the
main homepage interface, at the top, a structured horizontal menu offers straightforward
navigation for the user. Following the "Home" option is the "Movies" option. When the user
clicks on it, they are directed to a page where all the movies offered by the cinema are displayed.
Movies can be sorted by release date, popularity, or category, and descriptions and showtimes
can be viewed.

Next in the menu is the "About Us" option. This section provides a detailed overview of the

platform and its history, mission, and vision, as well as other information that can help clients
familiarize themselves better with the company and the services it offers.

The "Contact" option is for users wishing to communicate with the cinema staff. This page may
contain a form for sending messages, contact details like phone numbers, email address, and the
cinema's physical address.

At the end of the menu, the "Join Us" or "Sign Up" option is crucial for new clients. Clicking on
it takes them to a page where they can create an account and benefit from all the platform's
features.

This complete and well-organized menu ensures that every client can easily find what they are
looking for and benefit from a rich and swift experience on the cinema platform.

Through this interface, clients feel welcomed and informed, being offered an excellent and
unparalleled user experience on this cinema platform.

Figure 22: Movie Interface

Figure 23: Movie Details

In the "Movies" menu option, users have the opportunity to explore the films offered by the
cinema. When selecting a specific movie from the list, they are directed to a detailed page for
that film. On this detailed page, at the top, the movie's name is displayed. Also prominently
placed is an image of the film, usually the official poster or a primary scene. Below the image,
users can see the genre of the film, which could be, for instance, action, drama, comedy, etc.
The release date and duration of the movie are situated in a separate section, giving users a clear
idea of when the movie was released and its length.
The movie's description is located in a distinct part, usually below the main image or to its right.
This description provides a brief overview of the film's main events and themes without giving
away any spoilers.
In another section, the recommended age for viewing the film is displayed, assisting parents in
making informed decisions about whether their children should watch the movie.
At the bottom of the page, a section is dedicated to the actors and the main crew involved in the
film. Here, the names of the main actors are shown, and in some cases, their photographs, as
well as the roles they play in the movie.

This detailed page offers a comprehensive overview to engage users and inform them about

various aspects of the movie before deciding to watch it in the cinema.

3.3 Common Parts

Figure 24: Login

In this figure, we see a user authentication interface. This interface is designed in a simple and
effective manner, where users have the option to log into the system using their previously
registered personal data. However, for those who want a faster and more secure method, there's
also the option to authenticate using their Facebook or Google accounts. This offers an
alternative and easy route for users who don't want to type in their credentials every time they
wish to access the application.

Figure 25: Registration

In this figure, an interface dedicated to creating a new account in the system is presented. The
interface offers a simple and intuitive way to register the user's basic information. In addition to
the possibility of using existing data from Facebook or Google accounts, users have the option to
fill out manual fields such as: first name, last name, email, and password. An important feature
of this form is the requirement to enter the password twice, a step that ensures users are aware of
their choice and prevents potential mistakes. Additionally, the interface requests the user to
specify their gender and date of birth, helping in creating a more complete and personalized user
profile

4. Conclusion

Through the development of this project, I have reached a digital solution that assists us in managing all
operations within the cinema, in an impeccable manner. This new technology allows us to coordinate and
control all aspects of film operations with ease, while simultaneously reducing the workload within the
work environment and contributing to the simplification of all procedures.

This project serves as an advanced tool to optimize and automate all processes. It provides us with a
comprehensive solution for management, enabling control over every aspect of operations taking place
within the cinema. From ticket purchases to the organization of screenings, from monitoring variable
inventory to coordinating staff, this innovative platform offers stable and clear real-time control.

One of the main advantages of this project is its ability to enhance the quality of operations through the
automation of routine tasks. This not only eases the workload for cinema staff but also increases the
overall efficiency and precision of processes. Moreover, this project aids in creating a more refined
experience for cinema customers, as the time and resources taken for management are used more
intelligently and effectively.

In conclusion, this digital management solution offers us the opportunity to increase efficiency and control
in all spheres of the cinema. From organizing daily tasks to achieving long-term strategic goals, this
innovative platform brings about a significant change in the way we operate. This is not just technology,
but a trustworthy partner that aids in the growth and success of your film business.

References
[1] ZHANG, H. L. (2006)-Design and implementation of management system of EA-PGR

based on ASP.Net.

[2] Zhao, G. &. (2012).-Design and Application of Information Management System Based on

ASP.Net

[3] Gemino, A. &. (2009)- Use case diagrams in support of use case modeling: Deriving

understanding from the picture. Journal of Database Management (JDM)

[4] Al-Ghrairi, A. H. (2021)- An Application of Web-based E-Healthcare Management System

Using ASP.Net

[5] Adeoti‐Adekeye, W. B. (1997)- The importance of management information systems.

[6] Hu, Y. P. (2003). Design Technology of Three-tier Architecture on Web Application Based

on .NET. Computer Engineering.

[7] Dabbagh, M. &. (2014)- An approach for integrating the prioritization of functional and

nonfunctional requirements. The Scientific World Journal.

[8] Aristocon (2021, July 09)- Why MIS Is Important For Businesses?

https://aristotleconsultancy.com/mis-important-businesses/

[9] IBM Cloud. (2021, November 17)- What is three-tier architecture.

https://www.ibm.com/cloud/learn/three-tier-architecture

[10] Techfunnel. (2021, May 31)-How Management Information Systems Can Help Businesses

to Grow. https://www.techfunnel.com/information-technology/management-information-system/

[11] LAYOUTindex. (2019, April 9)- The importance of a cinema management system.

https://blog.layoutindex.com/the-importance-of-centralizing-your-operations-in-a-cinema

[12] Manali gujarathi (2022, 22 March)- Configure Services and Configure method in

ASP.NET https://www.geeksforgeeks.org/explain-configureservices-and-configure-method-in-

asp-net/

[13] Ibrahim Šuta (2022) -ASP.NET Core ConfigureServices vs Configure

https://codingblast.com/asp-net-core-configureservices-vs-configure

APPENDICES
Project\Web\Startup.cs

using System;

using Web.Models;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Mvc;

using Microsoft.EntityFrameworkCore;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

using Infrastructure.Identity;

using ApplicationCore.Entities;

using ApplicationCore.Interfaces;

using Infrastructure.Services;

using Infrastructure.Repositories;

using Microsoft.AspNetCore.Mvc.Razor;

using System.Globalization;

using Microsoft.AspNetCore.Localization;

using System.Collections.Generic;

using Microsoft.Extensions.Options;

using AutoMapper;

using Microsoft.Extensions.Localization;

using Web.Helpers;

using Rotativa.AspNetCore;

namespace Web {

 public class Startup {

 public Startup(IConfiguration configuration) {

 Configuration = configuration;

 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime. Use this method to

add services to the container.

 public void ConfigureServices(IServiceCollection services)

 {

 services.Configure < RequestLocalizationOptions > (options => {

 var en = new CultureInfo("en-US");

 en.NumberFormat.NumberDecimalSeparator = ".";

 en.DateTimeFormat.ShortDatePattern = "dd/MM/yyyy";

 en.DateTimeFormat.LongTimePattern = "dd/MM/yyyy";

 en.DateTimeFormat.ShortTimePattern = "HH:mm";

 en.DateTimeFormat.LongTimePattern = "HH:mm";

 var al = new CultureInfo("sq-AL");

 al.DateTimeFormat.ShortDatePattern = "dd.MM.yyyy";

 al.DateTimeFormat.LongTimePattern = "dd.MM.yyyy";

 al.DateTimeFormat.ShortTimePattern = "HH:mm";

 al.DateTimeFormat.LongTimePattern = "HH:mm";

 al.NumberFormat.NumberDecimalSeparator = ".";

 var supportedCultures = new []

 {

 en,

 al

 };

 options.DefaultRequestCulture = new RequestCulture(en, en);

 options.SupportedCultures = supportedCultures;

 options.SupportedUICultures = supportedCultures;

 });

 services.Configure < CookiePolicyOptions > (options => {

 // This lambda determines whether user consent for non-

essential cookies is needed for a given request.

 options.CheckConsentNeeded = context => false; // was true

 options.MinimumSameSitePolicy = SameSiteMode.None;

 });

 services.Configure < CookieTempDataProviderOptions > (options

=> {

 options.Cookie.IsEssential = true;

 });

 services.AddSession(options => {

 options.Cookie.IsEssential = true;

 });

 services.AddAuthentication()

 .AddFacebook(facebookOptions => {

 facebookOptions.AppId =

Configuration["Authentication:Facebook:AppId"];

 facebookOptions.AppSecret =

Configuration["Authentication:Facebook:AppSecret"];

 facebookOptions.Scope.Add("public_profile");

 facebookOptions.Scope.Add("email");

 //facebookOptions.ClaimActions.MapJsonKey("firstName",

"first_name");

 //facebookOptions.ClaimActions.MapJsonKey("lastName",

"last_name");

 //facebookOptions.ClaimActions.MapJsonKey("birthday",

"birthday");

 //facebookOptions.ClaimActions.MapJsonKey("gender",

"gender");

 })

 .AddGoogle(googleOptions => {

 googleOptions.ClientId =

Configuration["Authentication:Google:ClientId"];

 googleOptions.ClientSecret =

Configuration["Authentication:Google:ClientSecret"];

 });

 services.AddDbContext < ApplicationDbContext > (options =>

options.UseSqlServer(Configuration.GetConnectionString("DefaultConnecti

on")));

 services.AddDbContext < ApplicationDBContext > (options =>

options.UseSqlServer(Configuration.GetConnectionString("DefaultConnecti

on")));

 services.AddIdentity < ApplicationUser, ApplicationRole > ()

 .AddEntityFrameworkStores < ApplicationDbContext > ()

 .AddDefaultTokenProviders();

 services.Configure < IdentityOptions > (options => {

 // Password settings.

 options.Password.RequireDigit = true;

 options.Password.RequireLowercase = true;

 options.Password.RequireNonAlphanumeric = true;

 options.Password.RequireUppercase = true;

 options.Password.RequiredLength = 6;

 options.Password.RequiredUniqueChars = 1;

 // Lockout settings.

 options.Lockout.DefaultLockoutTimeSpan =

TimeSpan.FromMinutes(5);

 options.Lockout.MaxFailedAccessAttempts = 5;

 options.Lockout.AllowedForNewUsers = true;

 // User settings.

 options.User.AllowedUserNameCharacters =

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-._@+";

 options.User.RequireUniqueEmail = true;

 });

 services.AddAuthorization(option => {

 option.AddPolicy("SuperAdmin", policy =>

policy.RequireRole("Super Admin"));

 option.AddPolicy("Admin", policy =>

policy.RequireRole("Admin", "Super Admin"));

 option.AddPolicy("Manager", policy =>

policy.RequireRole("Admin", "Super Admin", "Manager"));

 option.AddPolicy("Receptionist", policy =>

policy.RequireRole("Admin", "Super Admin", "Receptionist"));

 option.AddPolicy("Client", policy =>

policy.RequireRole("Client"));

 });

 services.ConfigureApplicationCookie(options => {

 // Cookie settings

 options.Cookie.HttpOnly = true;

 options.ExpireTimeSpan = TimeSpan.FromMinutes(5);

 //options.LoginPath = "/Identity/Account/Login";

 //options.AccessDeniedPath =

"/Identity/Account/AccessDenied";

 options.SlidingExpiration = true;

 });

services.AddAutoMapper(AppDomain.CurrentDomain.GetAssemblies());

 // Add application services.

 services.AddTransient < ISelectListService, SelectListService >

();

 services.AddTransient < IEmailSender, EmailSender > ();

 services.AddTransient < IBookingRepository, BookingRepository >

();

 services.AddTransient < ICategoryRepository, CategoryRepository

> ();

 services.AddTransient < IEventRepository, EventRepository > ();

 services.AddTransient < IHallRepository, HallRepository > ();

 services.AddTransient < IMoviesRepository, MovieRepository >

();

 services.AddTransient < IScheduleRepository, ScheduleRepository

> ();

 services.AddTransient < ISeatRepository, SeatRepository > ();

 services.AddTransient < IErrorLogRepository, ErrorLogRepository

> ();

 services.AddTransient < IErrorLogService, ErrorLogService > ();

 services.AddTransient < IUserRepository, UserRepository > ();

 services.AddTransient < IRolesRepository, RolesRepository > ();

 services.AddTransient < IUserService, UserService > ();

 services.AddTransient < IFileHelper, FileHelper > ();

 services.AddTransient < IThumbnailService, humbnailService >

();

 services.AddTransient < ICompanyRepository, CompanyRepository >

();

 services.AddTransient < IVatRepository, VatRepository > ();

 services.AddTransient < ITicketRepository, TicketRepository >

();

 services.AddTransient < ISetupRepository, SetupRepository > ();

 services.AddTransient < IMovieCastRepository,

MovieCastRepository > ();

 services.AddTransient < ICastRepository, CastRepository > ();

 services.AddTransient < ICastTypeRepository, CastTypeRepository

> ();

 //services.AddScoped<INewsletterService, NewsletterService>();

 //services.AddTransient<IRepository, Repository>();

 services.AddControllersWithViews();

 services.AddLocalization(opts => { opts.ResourcesPath =

"Resources"; });

 services.AddMvc()

 .AddViewLocalization(

 LanguageViewLocationExpanderFormat.Suffix,

 opts => { opts.ResourcesPath = "Resources"; })

 .AddDataAnnotationsLocalization();

 }

 // This method gets called by the runtime. Use this method to

configure the HTTP request pipeline.

 [Obsolete]

 public void Configure(IApplicationBuilder app,

IWebHostEnvironment env)

 {

 if (env.IsDevelopment()) {

 app.UseDeveloperExceptionPage();

 app.UseDatabaseErrorPage();

 }

 else {

 app.UseExceptionHandler("/Home/Error");

 // The default HSTS value is 30 days. You may want to

change this for production scenarios, see https://aka.ms/aspnetcore-

hsts.

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 var options = app.ApplicationServices.GetService < IOptions <

RequestLocalizationOptions >> ();

 app.UseRequestLocalization(options.Value);

 app.UseCookiePolicy();

 app.UseRouting();

 app.UseAuthentication();

 app.UseAuthorization();

 app.UseSession(); // was added

 app.UseEndpoints(endpoints => {

 endpoints.MapControllerRoute(name: "MyArea", pattern:

"{area:exists}/{controller=Home}/{action=Index}/{id?}");

 endpoints.MapControllerRoute(name: "default", pattern:

"{area=Cinema}/{controller=Home}/{action=Index}/{id?}");

 });

RotativaConfiguration.Setup((Microsoft.AspNetCore.Hosting.IHostingEnvir

onment)env, "Rotativa");

 }

}

}

This is the application's configuration code. It consists of two main methods: ConfigureServices and
Configure.

ConfigureServices:
This method is used to configure services that will be available throughout the application. In addition to
the standard ASP.NET Core services, additional services for authentication, the database, and various

application services have been added.

Localization configuration has been set up for two languages: en-US and sq-AL.
Support for authentication with Facebook and Google has been added.
Authorization policies are configured.
Services for sending emails, services assisting in handling drop-down lists, etc. are registered.
Use of AutoMapper to facilitate mapping between models and application objects.

Configure:
This method is used to determine how HTTP requests will be processed by the application. This includes:
• Defining the development and production environments.
• Using authentication and authorization.
• Setting up the controller routes.
• Adding a middleware, a tool for generating PDFs with ASP.NET Core.

Project\Web\Helpers\FileHelper.cs

using ApplicationCore.Enums;

using ApplicationCore.Interfaces;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Threading.Tasks;

namespace Web.Helpers

{

 public class FileHelper : IFileHelper

 {

 private IWebHostEnvironment _env;

 private IThumbnailService _thumbnailService;

 public FileHelper(IWebHostEnvironment env, IThumbnailService

thumbnailService)

 {

 _env = env;

 _thumbnailService = thumbnailService;

 }

 public string GetProperFilePath(FileTypes type, Thumbnails

thumbnail, string path)

 {

 var properPath = "";

 try

 {

 var fileNameWithoutExtension =

Path.GetFileNameWithoutExtension(path);

 var fileExtension = Path.GetExtension(path);

 var pathWithoutFileName = Path.GetDirectoryName(path);

 var test = Path.GetFullPath(path);

 var newFileName =

$"{fileNameWithoutExtension}_{(int)thumbnail}{fileExtension}";

 var pathArray = path.Split('/');

 pathArray[pathArray.Length - 1] = newFileName;

 properPath = string.Join('/', pathArray);

 var absolutePath = pathWithoutFileName.Substring(1) +

"\\" + newFileName;

 absolutePath = _env.WebRootPath + absolutePath;

 if (!File.Exists(absolutePath))

 {

 throw new Exception();

 }

 }

 catch (Exception)

 {

 properPath = $"~/images/default-images/product-

default_{(int)thumbnail}.jpg";

 }

 return properPath;

 }

 public string GetProperFilePath(FileTypes type, Thumbnails

thumbnail, string path, bool forLogo)

 {

 var properPath = "";

 try

 {

 var fileNameWithoutExtension =

Path.GetFileNameWithoutExtension(path);

 var fileExtension = Path.GetExtension(path);

 var pathWithoutFileName = Path.GetDirectoryName(path);

 var test = Path.GetFullPath(path);

 var newFileName =

$"{fileNameWithoutExtension}_{(int)thumbnail}{fileExtension}";

 var pathArray = path.Split('/');

 pathArray[pathArray.Length - 1] = newFileName;

 properPath = string.Join('/', pathArray);

 var absolutePath = pathWithoutFileName.Substring(1) +

"\\" + newFileName;

 absolutePath = _env.WebRootPath + absolutePath;

 if (!File.Exists(absolutePath))

 {

 throw new Exception();

 }

 }

 catch (Exception)

 {

 properPath = null;

 }

 return properPath;

 }

 public string GetFavIconFilePath(string path)

 {

 string properPath;

 try

 {

 var fileNameWithoutExtension =

Path.GetFileNameWithoutExtension(path);

 var fileExtension = Path.GetExtension(path);

 var pathWithoutFileName = Path.GetDirectoryName(path);

 var test = Path.GetFullPath(path);

 var newFileName = Path.GetFileName(path);

 //var newFileName =

$"{fileNameWithoutExtension}_{(int)thumbnail}{fileExtension}";

 var pathArray = path.Split('/');

 pathArray[pathArray.Length - 1] = newFileName;

 properPath = string.Join('/', pathArray);

 var absolutePath = pathWithoutFileName.Substring(1) +

"\\" + newFileName;

 absolutePath = _env.WebRootPath + absolutePath;

 if (!File.Exists(absolutePath))

 {

 throw new Exception();

 }

 }

 catch (Exception)

 {

 properPath = null;

 }

 return properPath;

 }

 public void SaveFile(FileTypes type, IFormFile file, string

folderName, string id, params int[] thumbnails)

 {

 var filePath = Path.Combine(_env.WebRootPath, "uploads",

folderName, id, type.ToString());

 if (!Directory.Exists(filePath))

 {

 Directory.CreateDirectory(filePath);

 }

 (new FileInfo(filePath)).Directory.Create();

 using (var fileStream = new

FileStream(Path.Combine(filePath, file.FileName), FileMode.Create))

 {

 file.CopyTo(fileStream);

 fileStream.Close();

 }

 var fileNameWithoutExtension =

Path.GetFileNameWithoutExtension(file.FileName);

 var fileExtenstion = Path.GetExtension(file.FileName);

 foreach (var item in thumbnails)

 {

 string thumbnailPath = Path.Combine(filePath,

$"{fileNameWithoutExtension}_{item}{fileExtenstion}");

 _thumbnailService.GenerateThumbnail(item,

Path.Combine(filePath, file.FileName), thumbnailPath);

 }

 }

 public void SaveFavIcon(FileTypes type, IFormFile file, string

folderName, string id)

 {

 var filePath = Path.Combine(_env.WebRootPath, "uploads",

folderName, id, type.ToString());

 if (!Directory.Exists(filePath))

 {

 Directory.CreateDirectory(filePath);

 }

 (new FileInfo(filePath)).Directory.Create();

 using (var fileStream = new

FileStream(Path.Combine(filePath, file.FileName), FileMode.Create))

 {

 file.CopyTo(fileStream);

 fileStream.Close();

 }

 }

 public void SaveImage(FileTypes type, IFormFile file, string

folderName, string id)

 {

 var filePath = Path.Combine(_env.WebRootPath, "uploads",

folderName, id, type.ToString());

 if (!Directory.Exists(filePath))

 {

 Directory.CreateDirectory(filePath);

 }

 (new FileInfo(filePath)).Directory.Create();

 using (var fileStream = new

FileStream(Path.Combine(filePath, file.FileName), FileMode.Create))

 {

 file.CopyTo(fileStream);

 fileStream.Close();

 }

 var fileNameWithoutExtension =

Path.GetFileNameWithoutExtension(file.FileName);

 var fileExtenstion = Path.GetExtension(file.FileName);

 }

 }

}

This part of the code assists in managing files and aids in storing and retrieving various files.

The FileManager class is a helper for different file operations, including saving and retrieving files and

assisting in generating different files, such as thumbnails (small images).

Project\Web\Helpers\IFileHelper.cs

using ApplicationCore.Enums;

using Microsoft.AspNetCore.Http;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

namespace Web.Helpers

{

 public interface IFileHelper

 {

 void SaveFile(FileTypes type, IFormFile file, string

folderName, string id, params int[] thumbnails);

 void SaveFavIcon(FileTypes type, IFormFile file, string

folderName, string id);

 string GetProperFilePath(FileTypes type, Thumbnails thumbnail,

string path);

 string GetProperFilePath(FileTypes type, Thumbnails thumbnail,

string path, bool forLogo);

 string GetFavIconFilePath(string path);

 void SaveImage(FileTypes type, IFormFile file, string

folderName, string id);

 }

}

This is an interface that specifies the helper operations for files, so it's a helper for FileHelper.cs.

	Development of the application for cinema management with .net technology
	Recommended Citation

	1. Introduction
	2. Analysis of the application
	2.1 What is the 3-tier architecture?
	2.2 Details of the three layers
	2.3 Functional and non-functional requirements
	2.4 Diagrams
	2.5 Configuration

	3. RESULTS
	3.1 Management Part
	3.2 Pjesa e klientit
	3.3 Common Parts

	4. Conclusion
	References
	APPENDICES

