
University for Business and Technology in Kosovo University for Business and Technology in Kosovo 

UBT Knowledge Center UBT Knowledge Center 

UBT International Conference 2023 UBT International Conference 

Oct 28th, 8:00 AM - Oct 29th, 6:00 PM 

A DSL Framework for requirements engineering. A DSL Framework for requirements engineering. 

Tea Tavanxhiu 
University of Tirana, tea.tavanxhiu@unitir.edu.al 

Kozeta Sevrani 
University of Tirana - Faculty of Economy, kozeta.sevrani@unitir.edu.al 

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/conference 

Recommended Citation Recommended Citation 
Tavanxhiu, Tea and Sevrani, Kozeta, "A DSL Framework for requirements engineering." (2023). UBT 
International Conference. 32. 
https://knowledgecenter.ubt-uni.net/conference/IC/CS/32 

This Event is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It 
has been accepted for inclusion in UBT International Conference by an authorized administrator of UBT Knowledge 
Center. For more information, please contact knowledge.center@ubt-uni.net. 

https://knowledgecenter.ubt-uni.net/
https://knowledgecenter.ubt-uni.net/conference
https://knowledgecenter.ubt-uni.net/conference/IC
https://knowledgecenter.ubt-uni.net/conference?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2FIC%2FCS%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference/IC/CS/32?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2FIC%2FCS%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:knowledge.center@ubt-uni.net


A DSL Framework for requirements engineering. 
Tea Tavanxhiu1, Kozeta Sevani1 

 
1University of Tirana 

Tirana, Albania 

tea.tavanxhiu@unitir.edu.al 

kozeta.sevrani@unitir.edu.al 

 

Abstract. This research paper explores the integration of Domain-Specific 

Languages (DSLs) as a modeling framework for requirement engineering in 

software development lifecycle. The instantiation of the DSL is enabled form a 

proposed architecture of the Framework. The study investigates the benefits and 

challenges of using DSLs, emphasizing increased involvement of domain 

experts, reduced delivery time gaps, wider visibility, and reduced technology 

dependency. Through an Active Design Research (ADR) methodology, the 

paper consists in the execution of the first ADR cycle, proposing design 

principles for a DSL Framework. The findings highlight the importance of 

integrating domain knowledge, conceptual modeling, and semantic enrichment 

in requirement engineering. Further refinement of the empirical studies and 

feedback gathering from users on the proposed DSL framework will be part of 

the research project of the authors starting with this. 

 
Keywords: requirement engineering, information system design theory, action 

design research, domain specific language. 

 
 

1 Introduction 
The software development life cycle is complex and, in most cases, seen as an 

interdisciplinary project when correlated to the context of the usage of the application 

itself as well as the human interaction with the software. Requirement engineering is 

one of the initial phases of the software development lifecycle and is ofen referred to 

process of understanding of the stakeholder’s needs and documenting such needs once 

analysed. [1] It is as well considered as one of the most relevant topics of evaluation 

of the software quality and this calls for the need of continuos improvement of the 

undersatndng, approaches and tools used to conduct such phase during the 

development process of the software. 

There are multiple suggestions in the literature of what can be used for conducting the 

requirement engineering phase, and the scope of this research paper is to focus on a 

framework that considers the specificities of the domain and the problem/need at 

hand. We strongly believe that the interdisciplinarity of the information systems 

derives in an important rate from the requirement engineering process, and in this 

contex, we present two main arguments related to requirement engineering 

frameworks and domain-specific language (DSL) as a modeling framework for 

requirement engineering. The first argument discusses various requirement 

engineering frameworks and theories, highlighting the need for a comprehensive 

approach that integrates domain knowledge, conceptual modeling, and semantic 

enrichment. The second argument focuses on the potential benefits and challenges of 

using DSLs as a modeling framework for requirement engineering, emphasizing the 

advantages of increased involvement of domain experts, gap reduction in delivery 

time, wider visibility, and reduced dependency on technology. 

There are two research questions being addressed in this paper. 

Research Question 1: How can the integration with DSL enhance the requirement 

engineering aprocesses? 

Research Question 2: What are the benefits and challenges of using Domain-Specific 

Languages (DSLs) as a modeling framework for requirement engineering? 

The chosen methodology to conduct the research is through Active Design Research 

due to its ability to intercorrelate the domain expertise of practitioners with the 

literature and theory research during all the phases of an ADR cycle. This research 

conducts one ADR cycle while proposing the outputs of the evaluation, reflection, and 

learning phase as an input to the second ADR cycle and future work. 

mailto:tea.tavanxhiu@unitir.edu.al
mailto:kozeta.sevrani@unitir.edu.al


2 
 

 

1.1 Requirement engineering frameworks and relevant theories 

Requirement engineering is a discipline that is primarly related to software 

engineering, although there is trace in the literature that there are correlations between 

requirement engineering and knowledge problem in the theory of a problem domain 

[33]. When engineering the requirements an iterative process starting with the 

problem and context identification, moving toward domain analysis and theory 

adeguation, and concluding with implementation and evaluation. Given the nature of 

the requirement engineering discipline mostly focused on action design problems, we 

have chosen for this research work the Action Design Research methodology. 

Consulting the body of literature [2][3], there is trace of proposed ideas for a 

framework to depict requirements using a specific DSL, the Unified Modeling 

Language (UML). The main phases identified in a framework of interest for our 

research [2] include the feasibility study, the requirement collection and specification, 

the analysis of business requirements, the system requirement modeling, and the 

system design, which executed in a cycle might propose some main building blocks 

for such a framework. 

The NATURE framework [4] is a more mature framework and provides a rigorous 

foundation for requirements engineering and it integrates various disciplines by 

suggesting that the major divisions in the domain theory are [4] the conceptual model 

construction and the enrichment of the modeling languages and it’s semantics. During 

our research on the NATURE framework, we came across some really useful 

publications [5],[6],[7],[8],[9],[10] that actually have conducted research work based 

on the Nature Framework. These publications have progressed and applied the 

framework to the domain of action research and this plays in favor of the maturity of 

the franmewor. Publications such as [11], [12], [13] are of important interest ot our 

work given the very close nature of research to ths paper.We will refer to the 

NATURE framework as an important example of an early work that identified and 

highlighted the need of a comprehensive approach to requirements engineering. 

 
1.2 Domain specific language as a modeling framework for requirement engineering 

Requirement engineering is a knowledge problem and as such the solving of the 

problem requires action design research and a design problem analysis [14]. Domain 

knowledge is a critical component in the analysis and assessment of requirement 

engineering. The framework proposed in this paper attemots to integrate the 

convergence of influences coming from domain knowledge and domain-specific 

language, thereby proposing an operative approach to the requirement engineering 

and modeling procedures. 

DSL enable domain experts to directly contribute to the development effort by 

autonomously specifying parts of the solution.[15] The advantages of using a DSL 

based framework for requirement gathering analysis, modeling and engineering would 

be as following: 

• Increased involvement of the business domain experts in the requirement 

analysis and modeling processes. 

• Gap reduction in terms of time to delivery of the operational and functional 

requirements. 

• Greater insight from industry professionals and experts into the 

comprehensive scope of designed requirements for the software application. 

• Higher understanding of the intercorrelated engineered or to be engineered 

functionalities due to the multidisciplinary background of the business 

domain experts. 

• Reduced dependency from the technology stack and provide an abstract meta- 

model of design that can be applied in different applications. 

Even though DSL can be a good solution to building abstract modeling languages that 

do not need to be instantiated but might as well be re-used in different software 



3 
 

environments, it is important to acknowledge the challenges and limits it poses. As 

discussed in [16] these challenges and problems lie within the following categories of 

model abstraction, model decomposition, model translation and a main noted problem 

is the model adaption in other applications. 

To bypass these problems this paper proposes an instantiable framework that lies 

upon an application and the DSL is implemented within the framework, leaving every 

possible application untouched with the DSL logic, syntax, and complexity. This 

would enable the maintenance of the framework and the DSL, the communication 

with multiple applications regardless from their architecture or technology stack and 

the enrichment in a single DSL meta-framework of all identified and mapped 

operational, functional, transactional, or non-functional requirements. 

 

 
 

Table 1. Proposed DSL Framework 

 
2 Information Systems Design Theory 
The present paper focuses on the Theory for Design and Action as the primary theory 

type of interest, which is action-oriented and primarily concerned with practical 

aspects of designing, building, and implementing information systems. As per the 

categorization of theories, there exist five macro types [17], and Information Systems 

Design Theory (ISDT) falls under this category. The ISDT provides design principles 

that facilitate the accomplishment of specific objectives in real-world settings, without 

restricting hypothetical evaluations to controlled experimental environments. Also, it 

equips theoretical instructions for developing and enabling a specific type of 

information system, while also contributing to the expansion of knowledge in the field 

[18], [19]. 

 

Table 1. Components of an Information System Design Theory [18] 



4 
 

3 Research approach 
The research approach of this paper to formulate an Information System Design 

Theory follows the framework proposed by Walles et al [18] and the design principles 

of the framework are based on the reusability principles of Iivari et al [20] and the 

approach of Sein et al [21] to construct, intervene and evaluate IT-artifact within an 

organization which will lead to the contribution into design principles and theories. 

The sensitivity toward the usage of theory while conducting the research is inspired 

by Iivari [22] and as such it is important for this research to incorporate theoretical 

foundations. ADR as a method that combines action research and design science 

research, aims to develop innovative IT solutions while simultaneously addressing 

organizational or societal problems. To be aware of the challenges that ADR poses as 

a chosen methodology and to be able to correctly address the nascent problems from 

using it, we will base the usability of this methodology to the finding of Haj-Bolouri 

et al [23]. 

Empirical findings and kernel theories will contribute to the creation of the 

Information System Design Theory of this paper. 

 
4 Action Design Research cycle 
The ISTD of this paper has been generated by running one cycle of the ADR - 

method. While identifying the practice inspired research principle which derives from 

multiple workshops with supply chain management experts and practitioners, we have 

intentionally gone through a thorough literature research to gather a full understanding 

and to base the paper on a theory-integrated base. 

These two principles from the problem formulation phase have been used to generate 

a class of features for the proposed framework which after implementation are 

evaluated. 

The first ADR cycle will be followed by to other ADR cycles to complete the whole 

research project and the outputs, evaluations, and reflections from the first ADR cycle 

will serve as an initial analysis in the problem formulation phase of the second ADR 

cycle. 

The whole three predicted cycles will be complemented with the reflection and 

learning principle to finalize the research project with generalized outcomes and a 

contribution to the exiting knowledge on the usage of DSL for requirement 

engineering. 

The first activities toward the identification and formulation of the problem have been 

2 workshops with practitioners from the supply chain management industry and the 

abstract outcomes are as following: 

• DSL shall empower the practitioners and consultants of the organization to 

model and engineer new requirements (functional, transactional, operational) 

form the frequently changing dynamics of the organization due to inner and 

outer factors. 

• A DSL Framework laying outside of the applications that provides 

requirement engineering for the applications, would ease the process of 

technology change, reengineering of applications and the procurement 

process of applications. 

• The DSL syntax is a layer of complexity that need to be overcome with the 

proper interactive training and documentation for the practitioners. 

• The technology stack of the Framework should be able to offer microservices 

and operate in different communication methods. Very new but relevant 

communication method should be implemented within the Framework. 

• The implementation process should ensure the completeness of all 

requirement engineering categories possible in the domain of interest. All 

novel requirement engineering cases should fall within the identified, 

analyzed and implemented categories of requirement engineering. 

 
The scope of these two workshops was to address questions, issues and problems 



5 
 

deriving from the industry in understanding the system requirements and needs in 

terms of modeling and engineering day-to-day requirements through a DSL. The 

workshop topics of discussion were combined with the theoretical background from 

the literature review process. An alpha prototype was generated which had 

implemented 5 macro categories of requirement engineering areas and 497 types of 

specific requirement engineering cases in total for all 5 categories. 

The identified categories of interest for the alpha prototype are displayed in Table 2. 

 

Macro category of Total number of requirement 
requirement engineering engineering cases implemented 

area in the alpha prototype through a DSL in the framework 

Accounting 103 

Business 100 

Finance 100 

Marketing 99 

Statistics 95 

Table 2. Identified macro categories of requirement engineering in the alpha prototype 

and the respective number of requirement engineering cases analyzed and coded in 

the Framework. 

 
The alpha prototype of the framework was developed with the primary objective of 

providing an evaluation basis for both researchers or practitioners who are part of this 

research project. Furthermore, it aimed to offer insightful input for the subsequent 

ADR cycle that would be subject to future design decisions. 

The reflection and learning stage provided important feedback toward the challenges 

that such Framework would pose to a possible implementation in an organization such 

as the ability from a practitioner perspective to abstract upon the granularity of the 

specific case of requirement engineering and the capability to categorize such specific 

case. The maintenance of the framework also requires further investigation, analysis 

and poses a governance topic for discussion in future ADR cycles. 

 

Table 3. ADR executed cycle. 

 
In the first cycle of ADR, the evaluation phase plays a very important role in 

providing crucial feedback regarding the feasibility of the project and its potential to 

contribute to the design principles of ISDT. The design principles themselves have 

undergone evaluation through the interaction with practitioners. In the following 

paragraph, we shall delve further into the findings and contributions of said 

evaluation. 



6 
 

5 Information Systems Design Theory for the DSL Framework 
Relying on the framework for Information System Design Theory proposed by Walls 

et al [18], we have executed all the necessary phases prescribed by the DSR 

methodology. This involved identification of the core theories regading DSL and 

requirement engineering, determination of the requirements for the proposed artifact, 

establishment of features that would direct the design process of the artifact, 

development of the artifact, implementation, and eventual evaluation. 

We used Action Design Research in this research project to undertake an analysis of 

the relationship between requirement engineering and information system design 

(ISD). 

We are aware that requirement engineering is more frequently linked to software 

engineering than to Information System Design. This study focuses on understanding 

and proposing a multidisciplinary approach in the requirement identification, 

modeling, and engineering processes, particularly in the context of ISD's design 

process and theory, by examining the existing literature. The studies cited as [24], 

[25], and [26] offer insightful information and support our initial presumtion. 

Based on the input from the workshop, and a consultation to existing literature on the 

classification, categorization, and modelling of DSL [27], [28], [29], we have 

modeled 5 main categories which result with a common usage in different industries 

and can be a good ground for the evaluation of the alpha prototype. 

In this paper, we have used the FEDS framework proposed by Venable et al [30] as 

guiding principle to ensure that the contribution constituent of the structure focuses on 

the impact of the investigation on the subject region during the assessment stage. 

The evaluands in this case are the requirement engineering cases that were 

categorized. The artefacts/evaluands are evaluated altogether divided by category, 

after the design artefacts is developed. A naturalistic evaluation assessed the impact 

made by the framework by using the categories of implemented DSL in the 

framework above two applications in the Supply Chain Management digital 

environment of a retail company. The evaluation is performed using two specific 

information systems in an organization with real and impacting problems deriving 

from the requirement engineering processes. The evaluation phase was successfully 

completed with a good level of user acceptance of the DSL Framework and a set of 

challenges, comments, and ideas that will be used as input during the problem 

formulation stage of the upcoming cycle of the ADR. 

 

The kernel theories for the Information System Design Theory used for this research 

are categorized as following: 

• Requirement engineering 

• Literature on DSL and DSL Frameworks 

• DSL Modeling and Semantics 

• Domain knowledge on business processes. 

 
The design principles produced by the design theory consultation and the design 

process of the artifact are explicites in the next paragraphs. . 

The first design principle identifies the multidisciplinary character of requirement 

engineering and calls for a significant contribution for a significant contribution from 

domain knowledge and cross-correlation with practitioners and experts in the field. 

[1], [4],[6]. 

From the literature research we have identified that an underlying set of operational, 

transactional, functional, and non-functional requirements deriving from the 

organizations will conduct a reciprocal interaction process between the researcher, 

domain experts, practitioners, and end users of the proposed framework. 

The second design concept focuses on the definition of a model and the semantics of 

the innovative DSL that is used in the proposed framework based on the rules already 

in place and a review of other relevant used DSLs. [15], [28], [31], [32]. To properly 

conduct the construction of the DSL we have conducted an iterative process of 



7 
 

domain definition and scope of the DSL, semantics and the communication 

microservices toward the information systems, evaluation, testing and continuous 

refinement and enrichment of the cases and categories of DSLs. 

 

 
6 Conclusion and future work 
Following the recommendations from Walls et al. [18] and Gregor et al. [19] for 

creating, formulating, and formalizing the design principles of Information System 

Design theory, this paper describes the execution of the first ADR cycle for the 

development of an implemented artifact. 

Such principles can help practitioners and research in providing a theory-based 

guidelines for the construction of Framework that uses DSL in requirement 

engineering, as well providing theory-based principles that can be subject to further 

empirical evaluation. 

These design principles are formulated and sustained both by empirical activities and 

from kernel theories and as such can be validated and considered a valuable 

contribution to the ISDT for a DSL Framework. 

We acknowledge that the generalization of the rules and knowledge to the Design 

Theory is limited by the reflection and learning stages of the ADR cycle described in 

this paper. More additional ADR cycles will be required to validate, improve, and 

generalize the suggested design principles before they can be considered as novelty 

and an ISDT contribution to a DSL Framework for Requirement Engineering. 

Drawing upon the investigations conducted in our paper, it has been determined that 

the assimilation of domain expertise, conceptual modeling, and semantic 

augmentation into requirement engineering frameworks can yield noteworthy 

enhancements in the quest for a comprehensive approach to information system 

modeling. This is particularly significant when contemplating the proficiency of end 

users. Theoretically, our research refers to a framework that comprises domain 

knowledge and provides a Domain-Specific Language (DSL) to expert users of the 

organizations for modeling information systems based on business requirements. This 

is mostly beneficial in terms of defining data flows and engineering functional 

requirements. 

By utilizing domain-specific concepts, terminology, and syntax through the DSL, 

expert users can effectively capture and represent the complex details of the 

organization's requirements that might change over time. This facilitates better 

communication between domain experts and system designers, leading to a more 

exact and comprehensive representation of the desired information system. 

Additionally, the framework can now capture the semantic meaning underlying the 

requirements thanks to the introduction of conceptual modeling approaches and 

semantic enrichment, ensuring that the system's architecture closely matches the 

intended business objectives. This not only enhances the clarity and understanding of 

the information system but also improves its overall effectiveness and efficiency. 

Nevertheless, it is important to acknowledge that our conclusions are derived from a 

theoretical examination. Further empirical studies and real-world implementations are 

necessary to authenticate the practical benefits and potential challenges associated 

with integrating domain knowledge, conceptual modeling, and semantic enrichment 

into requirement engineering frameworks. 

Using Domain-Specific Languages (DSLs) as a modeling framework for requirement 

engineering offers several benefits, as already mentioned in the research work, but it 

also presents challenges across different domains. These challenges should be taken in 

consideration while addressing the second research question and they are divided into 

three main areas. The first area consist in the technological gap from a system 

perspective in accepting modeling requests from the DSL Framework. Second area 

consists in the exper - user perspective and their ability to bypass the important 

learning curbe for the usage of the specific implemented DSL. Last, there are 

challenges to be addressed from a system architectural perspective, as this approach 



8 
 

would require a convergence in the Framework of all the existing architectural 

infrastructures (or at least the selected ones) that will exchange requirement 

engineering and modeling with the DSL framework. 

This paper indicates that there will be future ADR cycle and that the problem 

formulation phase will start with the challenges and issues regarding the proposed 

artifact identified during the Reflection and Learning phase of the first ADR cycle. 

The problem formulation phase of the future ADR cycle will be subject to empirical 

studies, workshops and response gathering from end-users that experienced the 

requirement engineering through the alpha prototype of proposed DSL Framework. 

 
References 
[1] Batool, A., Hafeez Motla, Y., Hamid, B., Asghar, S., Riaz, M., Mukhtar, M., 

Ahmed, M., (2013), “Comparative Study of Traditional Requirement Engineering and 

Agile Requirement Engineering”, Advanced Communication Technology (ICACT), 

2013 15th International Conference. 

[2] Pandey. Dh., Suman. U., Ramani, A.K. (2011). “A Framework for Modelling 

Software Requirements”, IJCSI International Journal of Computer Science Issues, 

Vol. 8, Issue 3, No. 1, May 2011 

[3] S. Konrad, H. Goldsby, K. Lopez, (2006) “Visualizing Requirements in UML 

Models.” International Workshop REV’06: Requirements Engineering Visualization, 

[4] Jarke. M., Bubenko. J., Rolland. C., Sutcliffe. A., Vassiliou. J., (1993) “Theories 

Underlying Requirements Engineering: An Overview of NATURE at Genesis” 

[5] Pohl, K. (1994). “The three dimensions of requirements engineering: a framework 

and its applications”, Proceedings of the Second International Conference on 

Requirements Engineering (ICRE'94). IEEE. 

[6] Pohl, K., Haumer, P., Jarke, M. (1996). “Process-centered Requirements 

Engineering”, Proceedings of the Third International Conference on Requirements 

Engineering (ICRE'96). IEEE. 

[7] Pohl, K., Sikora, E. (1995). “Structured Natural Language: A Framework for the 

Integration of Formal and Informal Specification Techniques”, Proceedings of the 

17th International Conference on Software Engineering (ICSE'95). ACM. 

[8] Broy, M., Krüger, I. H., Pretschner, A. (2001). “Engineering Automotive 

Software”, Proceedings of the IEEE, 89(2), 183-197. 

[9] Zowghi, D., Offen, R. (2002). “A Logical Framework for Modeling and 

Reasoning about the Evolution of Requirements.” Requirements Engineering, 7(1), 1- 

30. 

[10] Pohl, K., Böckle, G., van der Linden, F. J. (2005). “Software Product Line 

Engineering: Foundations, Principles and Techniques.” Springer Science & Business 

Media. 

[11] Dalpiaz, F., Giorgini, P., Mylopoulos, J. (2013). “An Architecture-Centric 

Approach for Producing Quality Software Requirements”, IEEE Transactions on 

Software Engineering, 39(6), 789-806. 

[12] Fernández, D. M., Wagner, S., Kalinowski, M., Felderer, M., Mafra, P., Vetrò, 

A., Conte, T. (2017). “Naming the Pain in Requirements Engineering: Contemporary 

Problems, Causes, and Effects in Practice”, Empirical Software Engineering, 22(5), 

2298-2338. 

[13] Uchitel, S., Chechik, M. (2016). “Merging State Machines in Requirements 

Engineering”, Proceedings of the 38th International Conference on Software 

Engineering Companion (ICSE'16), 579-581. 

[14] Wieringa, R. J. (1996), “Methodologies of Requirements Engineering Research 

and Practice: Position Statement.” 

[15] Nussbaumer, M., Freudenstein, P., Gaedke, M., (2006), “Towards DSL-based 

Web Engineering”. 

[16] France, R., Rumpe, B., (2007), “Model-driven Development of Complex 

Software: A Research Roadmap”, Proceedings - International Conference on Software 

Engineering. 



9 
 

[17] Gregor, S., (2006). “The Nature of Theory in Information Systems”, MIS 

Quarterly, 30(3). 

[18] Walls, J., Widmeyer, G. R., El Sawy, O. A., (1992), “Building an Information 

System Design Theory for 

Vigilant EIS”, Information Systems Research, 3(1), pp. 36-59. 

[19] Gregor, S., Jones, D., (2007), “The Anatomy of a Design Theory”, Journal of the 

Association for Information Systems 8, no. 5, pp. 312-335. 

[20] Iivari, J., Perlt Hansen, M.R., Haj-Bolouri, A., (2021), “A Proposal for Minimum 

Reusability Evaluation of Design Principles” European Journal of Information 

Systems 

[21] Sein, K.M., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R., (2011), “Action 

Design Research”, MIS Quarterly, 35(1), pp. 37-56. 

[22] Iivari, J., (2020), “A Critical Look at Theories in Design Science Research”, 

Journal of the Association for Information Systems 21(3), 502-519 

[23] Haj-Bolouri, A., Purao, S., Rossi, M., Bernhardsson, L., (2018), “Action Design 

Research in Practice: Lessons and Concerns”. 

[24] Nuseibeh, B., Easterbrook, S., (2000), “Requirements Engineering: A 

Roadmap.”, Proceedings of the Conference on The Future of Software Engineering 

(pp. 35-46). ACM. 

[25] Horkoff, J., Maiden, N., (2018), “Creativity and Goal Modeling for Software 

Requirements Engineering.” ACM Transactions on Software Engineering and 

Methodology (TOSEM), 27(3), 1-44 

[26] Pacheco, C., García, A., (2012). “A Systematic Literature Review of Stakeholder 

Identification Methods in Requirements Elicitation.” Journal of Systems and 

Software, 85(7), 1481-1504. 

[27] Mernik, M., Heering, J., Sloane, A. M., (2005), “When and How to Develop 

Domain-Specific Languages”, ACM Computing Surveys (CSUR), 37(4), 316-344. 

[28] van Deursen, A., Klint, P., Visser, J., (2000), “Domain-specific languages: An 

annotated bibliography.”, ACM Sigplan Notices, 35(6), 26-36. 

[29] Kelly, S., Tolvanen, J. P., (2008), “Domain-Specific Modeling: Enabling Full 

Code Generation.” Wiley-IEEE Computer Society Press. 

[30] Venable, J., Pries-Heje, J., Baskerville, R., (2016) “FEDS: a Framework for 

Evaluation in Design Science Research”, European Journal of Information Systems 

(2016) 25, 77–89. 

[31] Poltronieri, I., Bernardino, M., Zorzo, A. F., de Borba Campos, M., (2018), 

“Usability evaluation framework for domain-specific language: a focus group study”, 

ACM SIGAPP Applied Computing Review. 

[32] Kosar, T., Bohra, S., Mernik, M., (2015), “Domain-Specific Languages: A 

Systematic Mapping Study”, Elsevier. 

[33] Wieringa, R. J. 2023. “Methodologies of Requirements Engineering Research 

and Practice: Position Statement” 


	A DSL Framework for requirements engineering.
	Recommended Citation

	tmp.1719306908.pdf.0D5j6

