Session

Civil Engineering, Infrastructure and Environment

Description

In this study, the effect of waste PET as lightweight aggregate (WPLA) replacement with conventional aggregate on the some physical and mechanical properties and residual compressive strength of concrete was investigated. For this purpose, five different mixtures were prepared (the reference mixture and four WPLA mixtures including 30%, 40%, 50% and 60% waste PET aggregate by volume). The fresh and dry unit weights, compressive strengths, flexural-tensile strengths, water absorption and porosity ratios of the mixtures were measured. In addition the specimens exposed to elevated temperatures at 150, 300 and 450 °C and the residual compressive strengths were measured. Test results indicated that the unit weight, compressive strength and flexural-tensile strength of the specimens decreased as the amount of WPLA increased in concrete. After exposing to elevated temperature, WPLA mixtures retained their structural integrity and compressive strengths at 150 °C and 300 °C. However there was a significant decrease in the residual compressive strength values of WPLA mixtures at 450 °C.

Keywords:

Waste PET aggregate, residual compressive strength, elevated temperature, recycling

Session Chair

Feti Selman

Session Co-Chair

Muhamet Ahmeti

Proceedings Editor

Edmond Hajrizi

ISBN

978-9951-437-65-3

First Page

50

Last Page

63

Location

Durres, Albania

Start Date

28-10-2017 2:00 PM

End Date

28-10-2017 3:30 PM

DOI

10.33107/ubt-ic.2017.44

Share

COinS
 
Oct 28th, 2:00 PM Oct 28th, 3:30 PM

The effect of elevated temperature on the lightweight concrete containing waste PET aggregate

Durres, Albania

In this study, the effect of waste PET as lightweight aggregate (WPLA) replacement with conventional aggregate on the some physical and mechanical properties and residual compressive strength of concrete was investigated. For this purpose, five different mixtures were prepared (the reference mixture and four WPLA mixtures including 30%, 40%, 50% and 60% waste PET aggregate by volume). The fresh and dry unit weights, compressive strengths, flexural-tensile strengths, water absorption and porosity ratios of the mixtures were measured. In addition the specimens exposed to elevated temperatures at 150, 300 and 450 °C and the residual compressive strengths were measured. Test results indicated that the unit weight, compressive strength and flexural-tensile strength of the specimens decreased as the amount of WPLA increased in concrete. After exposing to elevated temperature, WPLA mixtures retained their structural integrity and compressive strengths at 150 °C and 300 °C. However there was a significant decrease in the residual compressive strength values of WPLA mixtures at 450 °C.