Event Title

Development of an Online Fluorescence Method for near real time in vivo monitoring of Hydroxyl Radicals in rats

Session

Food Science and Technology

Description

Hydroxyl radicals have been implicated in the etiology of many diseases, therefore on line monitoring of hROS should be extremely helpful to further investigate and understand the role of hROS in the pathogenesis of neurological disorders and to develop medical strategies to reduce the damaging potential of hROS. Furthermore, while the use of the HPLC is limited in terms of time resolution (sampling time could not be reduced below 10 min) the on line system allows real-time measurements, which is crucial for understanding the chemical events involved in physiological and pathological processes. Therefore, the main emphasis of this work was to investigate hROS in vivo on line by using a simple and well characterized animal model of excitotoxic damage based on the application of a high concentration (1 mM and 500μM) of the non-NMDA glutamate receptor agonist, kainate (KA), to the neostriatum in freely moving animals through the dialysis probe. For this purpose a highly sensitive fluorescence detector equipped with a capillary flow cell, coupled directly to the rat striatal microdialysis system, was successfully developed and employed for continuous on line determination of hROS under in vivo conditions. Comparing with the HPLC or other analytical methods which are used for hROS detection, the presented method has provided significant advantages in terms of its sensitivity and simplicity. Further, due to its better temporal resolution and high precision, this method could find a wide application in understanding of hROS chemical events involved in some physiological and pathological processes and might also lead to a human application.

Keywords:

Hydroxyl radicals, Sensitive fluorescence detector, HPLC, Dialysis

Session Chair

Xhavit Bytyqi

Session Co-Chair

Violeta Lajqi

Proceedings Editor

Edmond Hajrizi

ISBN

978-9951-437-69-1

Location

Pristina, Kosovo

Start Date

27-10-2018 3:15 PM

End Date

27-10-2018 4:45 PM

DOI

10.33107/ubt-ic.2018.164

This document is currently not available here.

Share

COinS
 
Oct 27th, 3:15 PM Oct 27th, 4:45 PM

Development of an Online Fluorescence Method for near real time in vivo monitoring of Hydroxyl Radicals in rats

Pristina, Kosovo

Hydroxyl radicals have been implicated in the etiology of many diseases, therefore on line monitoring of hROS should be extremely helpful to further investigate and understand the role of hROS in the pathogenesis of neurological disorders and to develop medical strategies to reduce the damaging potential of hROS. Furthermore, while the use of the HPLC is limited in terms of time resolution (sampling time could not be reduced below 10 min) the on line system allows real-time measurements, which is crucial for understanding the chemical events involved in physiological and pathological processes. Therefore, the main emphasis of this work was to investigate hROS in vivo on line by using a simple and well characterized animal model of excitotoxic damage based on the application of a high concentration (1 mM and 500μM) of the non-NMDA glutamate receptor agonist, kainate (KA), to the neostriatum in freely moving animals through the dialysis probe. For this purpose a highly sensitive fluorescence detector equipped with a capillary flow cell, coupled directly to the rat striatal microdialysis system, was successfully developed and employed for continuous on line determination of hROS under in vivo conditions. Comparing with the HPLC or other analytical methods which are used for hROS detection, the presented method has provided significant advantages in terms of its sensitivity and simplicity. Further, due to its better temporal resolution and high precision, this method could find a wide application in understanding of hROS chemical events involved in some physiological and pathological processes and might also lead to a human application.