android, applications, permission, privacy


While Information and Communication Technology (ICT) trends are moving towards the Internet of Things (IoT), mobile applications are becoming more and more popular. Mostly due to their pervasiveness and the level of interaction with the users, along with the great number of advantages, the mobile applications bring up a great number of privacy related issues as well. These platforms can gather our very sensitive private data by only granting them a list of permissions during the installation process. Additionally, most of the users can find it difficult, or even useless, to analyze system permissions. Thus, their guess of app’s safety mostly relies on the features like rating and popularity, rather than in understanding context of listed permissions.

In this paper we investigate the relationship between the features collected from Android Market API 23 (such as Popularity, Total Number of Permissions, Number of Dangerous Permissions, Rating and Package Size) to app’s privacy violation. To show the influence of each feature we use linear regression and R squared statistics. The conducted research can contribute to the classification of mobile applications with regards to the threat on user’s privacy.



First Page


Last Page




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.