Session

Computer Science and Communication Engineering

Description

While Information and Communication Technology (ICT) trends are moving towards the Internet of Things (IoT), mobile applications are becoming more and more popular. Mostly due to their pervasiveness and the level of interaction with the users, along with the great number of advantages, the mobile applications bring up a great number of privacy related issues as well. These platforms can gather our very sensitive private data by only granting them a list of permissions during the installation process. Additionally, most of the users can find it difficult, or even useless, to analyze system permissions. Thus, their guess of app’s safety mostly relies on the features like rating and popularity, rather than in understanding context of listed permissions.

In this paper we investigate the relationship between the features collected from Android Market API 23 (such as Popularity, Total Number of Permissions, Number of Dangerous Permissions, Rating and Package Size) to app’s privacy violation. To show the influence of each feature we use linear regression and R squared statistics. The conducted research can contribute to the classification of mobile applications with regards to the threat on user’s privacy.

Keywords:

android, applications, permission, privacy

Session Chair

Kozeta Sevran

Session Co-Chair

Bertan Karahoda

Proceedings Editor

Edmond Hajrizi

ISBN

978-9951-437-60-8

First Page

61

Last Page

71

Location

Durres, Albania

Start Date

27-10-2017 3:00 PM

End Date

27-10-2017 4:30 PM

DOI

10.33107/ubt-ic.2017.88

Share

COinS
 
Oct 27th, 3:00 PM Oct 27th, 4:30 PM

Permission-based Privacy Analysis for Android Applications

Durres, Albania

While Information and Communication Technology (ICT) trends are moving towards the Internet of Things (IoT), mobile applications are becoming more and more popular. Mostly due to their pervasiveness and the level of interaction with the users, along with the great number of advantages, the mobile applications bring up a great number of privacy related issues as well. These platforms can gather our very sensitive private data by only granting them a list of permissions during the installation process. Additionally, most of the users can find it difficult, or even useless, to analyze system permissions. Thus, their guess of app’s safety mostly relies on the features like rating and popularity, rather than in understanding context of listed permissions.

In this paper we investigate the relationship between the features collected from Android Market API 23 (such as Popularity, Total Number of Permissions, Number of Dangerous Permissions, Rating and Package Size) to app’s privacy violation. To show the influence of each feature we use linear regression and R squared statistics. The conducted research can contribute to the classification of mobile applications with regards to the threat on user’s privacy.